大尺度结构观测限制暗能量模型
发布时间:2018-03-11 04:39
本文选题:暗能量 切入点:宇宙学扰动 出处:《大连理工大学》2015年博士论文 论文类型:学位论文
【摘要】:1998年,通过对Ia型超新星的观测,天文学家发现宇宙处于加速膨胀阶段。为了解释这一现象,在爱因斯坦引力框架下,我们认为具有负压强的暗能量主导宇宙的演化。2013年,高精度的Planck宇宙微波背景数据对标准模型的限制结果告诉我们:在宇宙的组分中,组成星系和星系团的普通物质占4.9%,影响宇宙结构形成的暗物质占26.8%,驱动宇宙加速膨胀的暗能量占68.3%。由此可见宇宙中的暗成分对其演化起着决定性的作用,这启发了学者们提出了不同的暗能量理论模型。在观测限制模型的方面,宇宙观测的几何数据不足以区分不同的暗能量模型,为了打破模型之间的简并,我们需要使用大尺度结构观测数据来限制理论模型,本文将主要使用红移空间扭曲数据来限制不同的暗能量模型。文中首先阐述了课题的研究背景、研究内容以及章节安排。紧接着在宇宙学的基本理论部分,我们重点介绍了背景宇宙的膨胀历史和宇宙的标量扰动理论。然后我们介绍了几种宇宙学观测数据,特别是强调了来自大尺度结构观测的红移空间扭曲数据。本文的第四章到第六章是研究工作的主要内容。在第四章中,我们考虑一种统一的暗流体模型,它的态方程演化具有快速转变的特点,我们分别从理论分析和观测检验来讨论模型存在的合理性。在第五章中,我们将常声速的统一暗流体分解为相互作用的暗物质和真空能,通过暗成分的密度扰动演化方程研究物质的结构增长历史,使用宇宙的几何观测和红移空间扭曲数据联合限制分解模型的参数空间。在第六章中,我们考虑动力学暗能量和暗物质之间存在相互作用的情况,推导暗成分的能量密度扰动和速度散度扰动的演化方程,讨论相互作用参数对宇宙结构增长历史的影响,并且使用大尺度结构观测数据对相互作用强度进行限制。最后一章是本文的总结和展望。
[Abstract]:In 1998, through observations of Type Ia supernovae, astronomers discovered that the universe was at an accelerated expansion stage. To explain this phenomenon, we believe that dark energy with strong negative pressure dominates the evolution of the universe in the framework of Einstein's gravitation. The limitation of high precision Planck cosmic microwave background data to the standard model tells us that in the components of the universe, The composition of galaxies and clusters of ordinary matter is 4.9, the formation of dark matter affecting the structure of the universe accounts for 26.8, and the dark energy driving the accelerating expansion of the universe accounts for 68.3. It can be seen that the dark components of the universe play a decisive role in its evolution. This inspired scholars to put forward different models of dark energy. In the aspect of observation limitation model, the geometry data of cosmic observation is not enough to distinguish different dark energy models, in order to break the degeneracy between the models, We need to use large scale structural observation data to limit the theoretical model. In this paper, we mainly use redshift spatial distortion data to limit different dark energy models. Then, in the basic theory of cosmology, we focus on the expansion history of the background universe and the scalar perturbation theory of the universe. Then we introduce several kinds of cosmological observation data. In particular, the redshift spatial distortion data from large-scale structural observations are emphasized. Chapters 4th to 6th are the main contents of the study. In Chapter 4th, we consider a unified dark fluid model. The evolution of the equation of state is characterized by rapid transformation. We discuss the rationality of the model from theoretical analysis and observation test. In Chapter 5th, we decompose the uniform dark fluid with constant sound velocity into interacting dark matter and vacuum energy. The density perturbation evolution equation of dark components is used to study the structural growth history of matter, and the geometric observation of the universe and the redshift space distortion data are used to limit the parameter space of the decomposition model. In Chapter 6th, Considering the interaction between dynamic dark energy and dark matter, the evolution equations of energy density perturbation and velocity divergence disturbance of dark component are derived, and the influence of interaction parameters on the history of cosmic structure growth is discussed. The interaction intensity is limited by using large scale structural observation data. The last chapter is the summary and prospect of this paper.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P159
,
本文编号:1596643
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1596643.html
教材专著