马鹿(Cervus elaphus)鹿茸快速生长期生长点软骨和茸皮组织microRNA表达谱研究
[Abstract]:Antler is the only mammalian organ in mammals that can reproduce periodically in mammals. It is a good animal model to study the molecular mechanism and regulation mode of regenerative medicine. Deer antler is a tender corner of the frontal part of the male deer, with its hair outside and the connective tissue and cartilage tissue all over the nerve and blood vessels. The growth, exfoliation, complete regeneration and obvious seasonal characteristics. Late spring and summer are the rapid growth period of antler antler, which can reach 2cm/d. deer antler cartilage and skin tissue to promote the regeneration of antler. However, the molecular mechanism of.MicroRNAs (miRNAs) is not clear. The non coding single strand small RNA molecules with 22nt, endogenous and post transcriptional levels regulate gene expression, mainly in post transcriptional negative regulatory gene expression, and by complementing the bases of the target gene mRNAs 3'non translation region (3' -UTR) to degrade mRNAs or inhibit mRNAs translation, thus playing the role of silence specific target genes. NAs is widely involved in regulating the life processes of animals, plants and viruses, and their functions are almost involved in all aspects of life activities. However, there are few reports on miRNAs regulation of antler regeneration. We have raised the following questions: is there a miRNAs expression in the deer antler tissue? How does miRNAs Express in different tissues of deer antler? The question can be further answered by the interaction between miRNAs and the known antler regeneration related genes. Is miRNAs playing an important role in the process of antler regeneration? This study collected the antler of 60 days in the growth of northeastern red deer, separated the antler cartilage and the velvet skin, and carried out the pilose antler cartilage and the small RNA Library of the velvet skin Solex A deep sequencing, and then using bioinformatics methods to dig into the sequencing data. The main research includes: (1) high throughput sequencing of antler cartilage and small RNA to provide data for miRNAs analysis; (2) analysis of pilose antler cartilage and miRNAs, identification of antler conservative and new miRNAs; (3) analysis of pilose antler cartilage and velvet skin miRNAs Difference expression; (4) predict the miRNAs two structure and target gene of antler antler, and carry out the target gene function annotation, explore the possible biological function of miRNAs; (5) q-PCR verification sequencing results. The main results are as follows: 1, the antler cartilage and the small RNA Library of the velvet skin were sequenced by miRNA Solexa, and 13513502 and 5524073 were obtained. The initial sequence readings (raw reads). After a variety of quality control programs, 9520645 and 3621894 high quality comparable sequence readings (mappable reads) were obtained, and 389 and 295 miRNAs.2 were identified respectively. The sequence length of miRNAs was mainly distributed in 18-25nt, and the sequence readings in the cartilage tissue of the deer antler reached the peak value at 18nt. The middle sequence readings reached the peak at 22nt, which accounted for 31.5%, 18% in the deer antler cartilage and the velvet skin library respectively, indicating that the sequencing results were rich in potential miRNAs.3, and 7 types of 684 deer antler miRNAs were screened, of which 611 were mammalian conserved miRNAs and 73 were new candidate miRNAs.4 of antler. The results showed that a large number of heterogeneous miRNAs were heterogeneous in the single miRNAs. Body isomiRNAs exists. The terminal base of 293 conservative miRNAs changes, the number of base increase is greater than the number of decrease, and the number of base changes of miRNAs3 'end is greater than 5' end; 94 miRNAs has base substitutions, including 62 conversion and 32 transformation.5. The expression of miRNAs in antler cartilage and skin library mainly concentrates on the expression In the first 20 miRNAs (all 80% of all miRNAs copies), the number of miR-21 in antler cartilage is the highest, and miR-127 has the highest copy number in the pilose antler skin. There are 168 miRNAs expressions in two tissues, and 103 miRNAs expressions with significant difference.6. The miRNAs expression of the deer antler is constructed by homologous comparison for the first time. The comparison was made between the 611 conservative miRNAs and the miRBase (V18.0) database of the deer antler. The results showed that the conservative miRNAs number of the deer antler and the cow was the most, up to 422, followed by the wild boar (42), the mice (37), the sheep (35) and the human (27).7, and the mfold software was used to predict the two structure of the antler miRNAs precursor, which could form a typical hairpin. In addition, TargetScan software was used to predict the conservative and newly discovered miRNAs (39) target genes in the antler cartilage and the velvet skin library. The function needs to be further studied by.8. Through real-time fluorescence quantitative PCR (RT-PCR) technology, the 14 conservative miRNAs, which have significant or not significant difference in the number of torture shells in the pilose antler cartilage and the velvet skin tissue, are verified to be two. The results show that the q-PCR data are basically consistent with the sequencing data. The results are true and reliable, and can reflect the miRNAs expression data of the antler cartilage and the velvet skin. From the perspective of the growth and development of the deer antler growth and development, this study obtained the rapid growth stage of the antler cartilage and the skin tissue by high throughput sequencing technology. MiRNAs expression profile, analysis of its sequence characteristics, detection of the expression level of miRNAs in different tissues in the rapid growth period of antler antler, the identification and function study of miRNAs. deer antler cartilage and skin miRNAs related to antler regeneration will promote the study of the molecular mechanism of antler regeneration. In order to further study the function of antler miRNAs, gene regulation and regulation will be further studied. The mechanism and discussion of miRNAs provide important data for reference in the biological function of velvet antler regeneration.
【学位授予单位】:东北林业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q953
【相似文献】
相关期刊论文 前10条
1 王玫;李思光;罗玉萍;;microRNA识别和鉴定方法[J];细胞生物学杂志;2007年04期
2 王晶;朱荣胜;宋万坤;张闻博;刘春燕;胡国华;陈庆山;;microRNA的实验和生物信息学开发方法[J];生物技术通报;2008年S1期
3 田明;费菁;胡晓湘;李宁;刘娣;孟庆勇;;microRNA-1,-133,-206在鼠肌肉中的表达谱[J];中国畜牧兽医;2009年08期
4 LEE Younghee;LUSSIER Yves A;;Identification of common microRNA-mRNA regulatory biomodules in human epithelial cancer[J];Chinese Science Bulletin;2010年31期
5 王芳;余佳;张俊武;;小RNA(MicroRNA)研究方法[J];中国生物化学与分子生物学报;2006年10期
6 郑玉姝;赵朴;赵宏坤;;microRNA及其应用前景[J];生物技术通讯;2007年01期
7 王春梅;李庆章;;microRNA在小鼠乳腺不同发育时期差异表达谱及作用(英文)[J];遗传学报;2007年11期
8 邹文辉;;新奇的调控分子——microRNA[J];安徽农业科学;2008年34期
9 ;MIRE: A GRAPHICAL R PACKAGE FOR MICRORNARELATED ANALYSIS[J];Chinese Medical Sciences Journal;2008年04期
10 张坤山;李思光;罗玉萍;;调控过氧化物酶体生物合成和增殖的microRNA的计算机分析[J];细胞生物学杂志;2009年02期
相关会议论文 前10条
1 荆清;袁文俊;秦永文;;microRNA的基因调控新功能[A];中国生理学会第五届全国心血管、呼吸和肾脏生理学学术会议论文摘要汇编[C];2005年
2 靳新;骆志刚;王金华;管乃洋;;microRNA靶标研究进展[A];中国遗传学会功能基因组学研讨会论文集[C];2006年
3 ;Comparasion of Inhibitory Effects on Survivin Gene Expression in Prostate Cancer by Vector-based microRNA and siRNA[A];2008年全国生物化学与分子生物学学术大会论文摘要[C];2008年
4 朱丹霞;徐卫;缪扣荣;方成;朱华渊;董华洁;王冬梅;范磊;乔纯;李建勇;;慢性淋巴细胞白血病microRNA异常表达研究[A];第13届全国实验血液学会议论文摘要[C];2011年
5 Yangchao Chen;;Small molecule modulators of microRNA-34a with anti-cancer activities[A];2013医学前沿论坛暨第十三届全国肿瘤药理与化疗学术会议论文集[C];2013年
6 金希;厉有名;;单纯性脂变与非酒精性脂肪性肝炎间差异microRNA表达谱研究[A];2009香港-北京-杭州内科论坛暨2009年浙江省内科学学术年会论文汇编[C];2009年
7 贾新正;卢肖男;聂庆华;张细权;;鸡部分microRNA的同源预测与克隆验证[A];中国动物遗传育种研究进展——第十五次全国动物遗传育种学术讨论会论文集[C];2009年
8 李炯;段德民;郑克孝;;新型非标记高通量microRNA芯片技术[A];第一届全国生物物理化学会议暨生物物理化学发展战略研讨会论文摘要集[C];2010年
9 徐小涛;陆晓;孙婧;束永前;;肺癌侧群细胞microRNA表达谱检测及初步分析[A];2010’全国肿瘤分子标志及应用学术研讨会暨第五届中国中青年肿瘤专家论坛论文汇编[C];2010年
10 王俊峰;李巍;吴小江;阮康成;;大鼠附睾microRNA表达谱的研究[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
相关重要报纸文章 前2条
1 陈英云 乔蕤琳;哈医大成功研发国内首例microRNA转基因及敲减小鼠模型[N];黑龙江经济报;2010年
2 记者 陈青;2厘米以下肝癌检出率88%[N];文汇报;2011年
相关博士学位论文 前10条
1 崔洪亮;microRNA的肿瘤表达研究及协同调控网络分析[D];中南大学;2014年
2 马建华;高粱低磷低氮形态生理特征及低氮响应的microRNA研究[D];山西农业大学;2014年
3 李虔桢;microRNA相关基因遗传多态性与冠心病临床关联及预后研究[D];福建医科大学;2015年
4 王耀辉;血清microRNA作为乳腺癌诊断标志物的研究[D];复旦大学;2014年
5 周霁子;环境因素对心脏畸形胎儿影响的表观遣传学机制[D];复旦大学;2013年
6 张丽;microRNA通过调控小胶质细胞炎性反应参与血管性认知障碍发生发展[D];复旦大学;2014年
7 查若鹏;肝癌转移相关microRNA的鉴定及其分子机制研究[D];复旦大学;2013年
8 方砚田;结肠癌干细胞分选、差异microRNA表达谱检测以及miR-449b-CCND1、E2F3通路在结肠癌干细胞自我更新的机制研究[D];复旦大学;2014年
9 辛成齐;椰枣microRNA鉴定及其在果实发育过程中的表达谱研究[D];中国科学院北京基因组研究所;2015年
10 李栋;先天性心脏病血浆microRNA表达谱及与GATA4靶序列单核苷酸多态性的关联研究[D];山东大学;2015年
相关硕士学位论文 前10条
1 高智红;应用多样性增量方法识别人类基因组microRNA前体序列[D];内蒙古大学;2010年
2 王娜娜;microRNA进化关系及编码特性研究[D];内蒙古大学;2007年
3 王玫;小麦microRNA的鉴定与分析[D];南昌大学;2007年
4 秦保东;原发性胆汁性肝硬化microRNA表达谱的检测及其功能研究[D];第二军医大学;2013年
5 吴晓妍;基于纳米复合材料及生物放大技术构建的电化学microRNA传感器的研究[D];西南大学;2015年
6 周景辉;2型糖尿病microRNA表达谱及其信号通路研究[D];华南理工大学;2015年
7 姜溪;血浆microRNA-486、microRNA-499在肺癌中的表达及临床价值的研究[D];河北大学;2015年
8 林杉;营养诱导舍饲绵羊非繁殖季节发情相关microRNA筛选及其靶基因功能验证[D];石河子大学;2015年
9 林妹妹;microRNA-192 和 microRNA-21 在 IBD 患者中的表达情况[D];福建医科大学;2015年
10 徐娇阳;循环microRNA用于低氧性肺动脉高压早期诊断的实验研究[D];石河子大学;2015年
,本文编号:2135266
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2135266.html