量子光学中的算符Hermite多项式理论及其应用
[Abstract]:The development of modern physics theory needn't be doubted to need advanced mathematics. Theoretical physicists should invent corresponding mathematics according to their own physical needs, display their unique way of thinking.Hermite polynomials as a special function, and have extensive applications in quantum mechanics and quantum optics. For example, the eigenstates of quantum harmonic oscillator. The wave function is described by the Hermite polynomials. The predicate of the special functions is that they have their special recursive law, and they are easy to be memorized by the set of.Hermite polynomials H_m (x), which constitute a complete orthogonal function space, and have a certain position in the field of mathematics and physics. This paper proposes the X sect of the Hermite polynomial (x is real) as a quantum force. The operator (coordinate operator X) is a substitute for the H_m (X) as the operator Hermite polynomial, because the operator in the quantum mechanics is generally not easy, so the ordering problem of the operator's special function itself is a new mathematical problem. We combine the integral techniques in the ordered operator to systematically study its various properties and give H_m (X) in the system. On the basis of the new characteristics of the operator sorting, some new operator identities can be derived. They have important applications in the construction of quantum optical state vectors. When the H_m (X) ordering rules are transitioning to the classical case, we get the generalized binomial theorem and some new parent functions of the Hermite multinomial H_m (x). Formula. The operator Hermite polynomial theory includes: 1. the new relation between various special functions can be found by the new formula of the special function of the operator..2. can derive a number of useful new integral formulas (but without real integral), the.3. can be used as a special operator, using the order forms of the special functions of the operator and the completeness of the quantum representation. Function identities rich quantum theory and transformation theory.4. more deeply establish the quantum correspondence of classical functions, help the development of quantum phase space theory,.5. find new power series expansion of some special functions and invert.6. convenient and direct calculation of various physical quantities, such as moment function, cumulative function and so on. This paper will also study The dual variable Hermite polynomials H_m, n (x, y) needed in quantum entanglement, the operator Hermite polynomial theory is generalized to the operator's double variable Hermite polynomial, and its properties and applications are studied. In this paper, the theory of the operator Hermite polynomial is constructed and discussed from physical concepts and physical requirements. The theory of the operator Hermite polynomials should be discussed smoothly. In the first chapter, the integral technique in the ordered operator invented by Chinese scholar Fan Hongyi is introduced. In the second, third chapter, the theory of the operator Hermite polynomial (single variable) is introduced, the core of which is the regular multiplication and the unconventional multiplication of the operator Hermite polynomials. The fourth chapter introduces how to derive Laguerre polynomials using the operator Hermite polynomial theory. In the past, they are considered respectively. The fifth chapter describes the physical application of the normal product Hn (X) = 2n: of the operator Hermite polynomials. The sixth chapter introduces the derivation of the Hn (Q's new binomial theorem) by the operator Hermite multinomial method. The seventh chapter The formula of the parent function of even and odd Hermite polynomial is derived by the operator Hermite polynomial method. From eighth chapters to the eleventh chapter, the way to introduce the dual variable Hermitee polynomial is introduced and the dual variable operator Hermite polynomial theory is established, and the new mother function formula is derived. In the twelfth chapter, the completeness of the Fock space can only be used in the past. How can the completeness spread in the mixed state? The results show that the Fock space can be divided into a mixed state (binomial state or negative binomial state). In a word, the operator Hermite polynomial theory and the new division of the Fock space have played an active role in further understanding the structure of the Fock space and enriching the connotation of the Fock space.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O431.2
【相似文献】
相关期刊论文 前10条
1 李季,倪致祥;通用的角动量阶梯算符[J];大学物理;2000年07期
2 白音布和;仲志国;李根全;;量子力学中的超算符概念[J];南阳师范学院学报;2011年03期
3 Jan G.-Mikusiński;櫘康;;论算符微积的基础[J];数学进展;1957年03期
4 程德仁;;算符演算在电路与系统分析中的应用[J];电子测量技术;1977年01期
5 陶润康;指数算符的性质及应用[J];嘉兴师专学报;1983年S1期
6 范洪义,翁海光;P-表示为经典位相的位相算符[J];量子电子学;1992年03期
7 陈光巨,李玉学;一种新的五原子体系内坐标形式的量子力学振转动能算符[J];中国科学(B辑);2000年01期
8 王肇庆,佘守宪,苏惠惠;关于构造阶梯算符[J];大学物理;2000年04期
9 边志华,周希坚;i銈 沆/(沆t)是算符吗[J];大学物理;2000年08期
10 佘守宪,王肇庆,苏惠惠;构造阶梯算符的定理及其应用[J];大学物理;2001年01期
相关会议论文 前10条
1 周进元;高汉宾;;强耦合体系脉冲实验的积算符描述[A];第五届全国波谱学学术会议论文摘要集[C];1988年
2 周进元;高汉宾;吴钦义;;高秩张量算符对多指数弛豫测量的影响[A];第六届全国波谱学学术会议论文摘要集[C];1990年
3 孔祥铭;黄永仁;;弛豫计算中的积算符表示[A];第六届全国波谱学学术会议论文摘要集[C];1990年
4 吴勇;徐汉涛;於昌荣;;逆算符方法在非线性振动中的应用[A];华东五省振动工程学会第五届学术交流会论文集[C];2001年
5 ;自旋结网圈表象中体积算符对高价顶角的作用[A];湖北省物理学会、武汉物理学会成立70周年庆典暨2002年学术年会论文集[C];2002年
6 刘爱琢;裴奉奎;;多脉冲NMR实验的多量子积算符描述[A];第五届全国波谱学学术会议论文摘要集[C];1988年
7 龙姝明;孙彦清;徐晖;傅晓玲;;阶梯算符方法在稀薄费米气体热力学性质研究中的应用[A];中国数学力学物理学高新技术交叉研究学会第十二届学术年会论文集[C];2008年
8 刘爱琢;裴奉奎;;磁等性自旋体系的乘积算符描述[A];第四届全国波谱学学术会议论文摘要集[C];1986年
9 马继军;叶朝辉;吴钦义;;积算符NMR矢量模型[A];第四届全国波谱学学术会议论文摘要集[C];1986年
10 王士良;;论场和路的统一[A];中国电工技术学会第八届学术会议论文集[C];2004年
相关博士学位论文 前10条
1 展德会;量子光学中的算符Hermite多项式理论及其应用[D];中国科学技术大学;2017年
2 郭琴;用纠缠态表象和有序算符内的积分方法发展量子力学相空间理论[D];上海交通大学;2008年
3 李根全;量子物理中的非对易分析与超算符[D];吉林大学;2004年
4 吴昊;量子力学中的不变本征算符方法及其应用[D];中国科学技术大学;2008年
5 牛金波;光学信号分析在量子力学中的研究进展和量子层析技术[D];中国科学技术大学;2012年
6 袁洪春;量子光学中算符编序理论进展及其应用[D];上海交通大学;2011年
7 吕翠红;用IWOP技术和纠缠态表象发展量子相空间理论[D];中国科学技术大学;2011年
8 贺伟;AdS/CFT对偶中的Wilson loop算符[D];中国科学院研究生院(理论物理研究所);2008年
9 许业军;量子力学表象新应用及构造的新方法[D];中国科学技术大学;2011年
10 何锐;量子相空间分布函数在几种量子通道中的演化[D];中国科学技术大学;2014年
相关硕士学位论文 前10条
1 寻大毛;轨道角动量量子数的升降算符[D];湖南大学;2010年
2 贾继莹;Koopman算符在一些动力系统中的算法和应用研究[D];清华大学;2015年
3 汪志龙;单模压缩菲涅尔算符的探究及其在量子信息中的应用[D];江西师范大学;2016年
4 荣小平;对球面上含N×L项算符的代数分析[D];湖南大学;2010年
5 赖玫玫;约束在弯曲曲面上运动的粒子动量和动能算符[D];湖南大学;2007年
6 肖艳萍;约束引起的算符次序问题及其解决[D];湖南大学;2005年
7 展德会;算符厄米多项式的若干恒等式及其应用[D];中国科学技术大学;2011年
8 张志军;量子信息实验设计的算符表达[D];华东师范大学;2004年
9 申杨;几何动量与二维球面上湮灭算符的关系研究[D];湖南大学;2014年
10 沈尧;Gentile统计的算符实现及应用[D];天津大学;2007年
,本文编号:2142415
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2142415.html