小ERF转录因子参与调控拟南芥对ABA和盐胁迫的响应
[Abstract]:Ethylene (Ethylene) participates in many aspects of plant growth and development, including seed dormancy break, seedling growth regulation, leaf abscission, flower opening and senescence and abscission, fruit ripening, nodule formation, etc. in addition, ethylene also participates in regulating plant biological stress such as pathogen infection, as well as response to abiotic stress such as drought, salt and other abiotic stresses,.ER Fs (Ethylene Response Factors) is a unique transcription factor in plants. It belongs to the AP2 (APETALA2) /ERF superfamily.ERF family with 4 small ERF proteins, which are ERF95, ERF96, ERF97, and respectively. These proteins are highly similar, and are highly similar to those of other carboxy terminal sequences. The domain CMIX-1, but they do not possess the N terminal transcriptional factor active regions of other ERFs, such as AtERF1 and other ERFs, has been reported that ERF95 and ERF98 participated in the regulation of plant response to abiotic stress, while ERF96 and ERF97 participated in the regulation of plant responses to biological stress. The effect of mustard on ABA response. The phylogenetic tree analysis of the whole sequence of amino acids showed that ERF95, ERF96 and ERF97 were clustered into one cluster, and the relationship between ERF98 and their three was far from.QRT-PCR results showed that the expression patterns of these small ERFs were different: ERF95, ERF97 and ERF98 in the roots, stems, leaves, flowers and maturity of Arabidopsis plants. The expression of ERF95 is the highest in the mature seeds, but the highest expression in the mature seeds, the highest expression of ERF98 in the stem, while the expression of ERF97 in the flowers and seeds is relatively high.ERF96 is also high in the flowers and seeds, but in the root, almost no expression of ERF96 is detected. Protein subcellular localization analysis indicates ERF95, E RF96, ERF97 and ERF98 were both located in the nucleus. The transient transfection experiment of mesophyll protoplasts showed that all ERFs had transcriptional activation activity, and the EDLL motif was necessary for its transcriptional activation activity. Although the three mutant erf95 erf96 erf97 and erf96 erf97 erf98, and the four mutant erf95, are all closely related to the wild type phenotype. However, the overexpression of Arabidopsis plants was obviously different from the wild type, especially in ERF95. Especially, there was a significant difference between the size of the lotus leaf and the wild type of ERF95, ERF96 and ERF98 (P0.01), and the flowering time was obviously delayed (P0.01).ABA sensitivity test results showed that the transgene of Arabidopsis small ERFs was overexpressed. The sensitivity of the plant to ABA was enhanced, especially ERF95, ERF96 and ERF98 overexpressed transgenic plants. After ABA treatment, the germination rate, the green seedling rate and the root length were far lower than those of the wild type.QRT-PCR. The expression level of ABA responsive genes in the over expressed ERFs transgenic plants was significantly higher than that of the ABA response genes. The results of physiological experiments showed that the water loss rate of the transgenic plants with small ERFs overexpression was significantly lower than that of the Col wild type, and the pore size of the plant was less than that of the wild type of Col, and the instantaneous leaf water use efficiency of the plant was higher than that of the Col wild type. These results indicated that the small ERFs was all involved in the response to ABA in Arabidopsis thaliana. In addition, we were able to regulate the response of the transgenic plants to the wild type of the Col. It was also found that ERF96 and ERF97 were also involved in the response of Arabidopsis to NaCl stress. Under the condition of NaCl treatment, the seedling growth of ERF96 and ERF97 over expressed transgenic plants was better than the wild type, and the fresh weight on the ground part was significantly higher than that of the wild type, and the number of the lateral roots was significantly more than the wild type.NaCl treatment could induce RD29A, P5CS, COR15A in the wild type Col. The expression of salt stress response genes, such as KIN1 and RAB18, and the expression level of these genes in ERF96 and ERF97 transgenic plants were significantly higher than those of Col wild type. The results of ion content detection showed that the content of Na+ in the small ERF96 and ERF97 overexpressed transgenic plants was relatively low, and the K+ content was higher, indicating that small ERFs may be influenced by Na+, K+. Metabolism then regulates plant responses to salt stress.
【学位授予单位】:东北师范大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q943.2
【相似文献】
相关期刊论文 前10条
1 陈瑞;王丽蓉;陆漓;张振先;张德颐;;水稻幼叶中与ABA亲和力强的结合蛋白[J];Journal of Integrative Plant Biology;1992年03期
2 邢宇,王幼群,张蜀秋,黄从林,吴忠义,贾文锁;酪氨酸蛋白磷酸酶可能影响ABA的积累和参与植物细胞水分胁迫信号传递[J];科学通报;2003年04期
3 赵春章;刘庆;姚晓芹;汪明;龚良春;;长期喷施ABA对云杉幼苗生长和生理特性的影响[J];植物学通报;2008年03期
4 李巍;萧浪涛;;一种新型电流型免疫传感器的ABA最优测定条件研究[J];生物技术通报;2008年03期
5 董永华,史吉平,李广敏,韩建民,商振清;外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J];西北植物学报;1998年02期
6 刘荣坤;沈英娃;刘小洁;;植物对二氧化硫生理反应的研究 Ⅱ.气孔与抗性关系及 ABA(脱落酸)效应的测定[J];辽宁大学学报(自然科学版);1983年01期
7 李亚男,陈大清,胡培丽;ABA和6-BA对不同温度条件下芝麻幼苗某些生理指标的影响[J];长江大学学报(自科版);2005年08期
8 李霞;任承钢;;ABA、BA及DPI对高表达玉米C_4pepc基因的水稻光合特性及叶绿素荧光特性的影响[J];植物生理学报;2012年06期
9 张亮;李燕;杨笑tR;吴明杰;蔡黎;杨毅;;一个与ABA信号通路相关未知基因AB的亚细胞定位研究[J];四川大学学报(自然科学版);2010年04期
10 谭云,叶庆生,李玲;植物抗旱过程中ABA生理作用的研究进展[J];植物学通报;2001年02期
相关会议论文 前10条
1 刘春玲;彭新湘;郭振飞;;水稻对几种逆境的抗性与ABA的关系[A];中国青年农业科学学术年报[C];2002年
2 赵志光;陈国仓;张承烈;;活性氧和一氧化氮参与干旱胁迫诱导的小麦根尖ABA合成[A];西部地区第二届植物科学与开发学术讨论会论文摘要集[C];2001年
3 汤日圣;张大栋;童红玉;;高温胁迫伤害水稻秧苗及6-BA、ABA的调节作用[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
4 张蓉平;左彪;高杰;张丽;王新平;;分子水平研究AB及ABA型氟化嵌段共聚物甲苯溶液气液界面结构[A];中国化学会第十三届胶体与界面化学会议论文摘要集[C];2011年
5 郭振飞;刘娥娥;卢少云;陈慧萍;刘春玲;;水稻对几种逆境的多重耐性—与ABA的关系[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
6 蒋明义;;ABA诱导作物细胞抗氧化防护的信号转导研究[A];中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C];2009年
7 张晓枫;姜涛;王小芳;张大鹏;;ABA信号转导:ADR2拮抗ABAR-WRKY40信号通路[A];2011全国植物生物学研讨会论文集[C];2011年
8 王勇;陆旺金;张昭其;;ABA在果实采后领域的研究进展[A];中国园艺学会第五届青年学术讨论会论文集[C];2002年
9 陈其军;安瑞;秦治翔;陈珈;王学臣;;通过同时激活依赖于ABA和不依赖于ABA的逆境胁迫信号转导途径改善拟南芥和烟草的抗逆性[A];2004中国植物生理生态学学术研讨会论文摘要汇编[C];2004年
10 于晶;王兴;苍晶;;外源ABA、GA及6-BA对冬小麦抗寒性的影响[A];中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C];2009年
相关博士学位论文 前9条
1 孙永华;玉米ABA受体基因的选择性剪接及其在抗旱性方面的功能研究[D];中国农业科学院;2014年
2 吕天晓;拟南芥MAX2蛋白介导ABA信号及抗旱反应的分子机制[D];中国科学院研究生院(东北地理与农业生态研究所);2015年
3 王晓苹;小ERF转录因子参与调控拟南芥对ABA和盐胁迫的响应[D];东北师范大学;2016年
4 张浩;ABA敏感性对拟南芥群体异速生长指数和个体相互作用的调控研究[D];浙江大学;2006年
5 王金香;ABA诱导的玉米(Zea mays L.)MAPK基因克隆、表达分析、定位及功能研究[D];南京农业大学;2009年
6 吕东;ATHK1参与ABA诱导气孔关闭的信号转导过程[D];河南大学;2012年
7 张艳艳;植物磷酶D、一氧化氮和过氧化氢在转导ABA、盐胁迫信号中的关系[D];南京农业大学;2007年
8 刘浩;拟南芥一个2OG-Fe(Ⅱ)氧化还原酶在GA合成及其与ABA互作的功能分析[D];河南大学;2011年
9 弓雪;拟南芥AtSUC2和AtSUC4对理化逆境及外源ABA的响应[D];沈阳农业大学;2013年
相关硕士学位论文 前10条
1 朱兰芳;ABA对水稻不同发育阶段光合作用调控及其机理分析[D];福建农林大学;2012年
2 顾建伟;光敏色素B介导的光信号调控水稻ABA反应的研究[D];郑州大学;2012年
3 邹兴建;干旱胁迫下不同倍性水稻的生理差异及ABA相关基因表达比较[D];四川农业大学;2010年
4 郭贵华;长江下游水稻品种耐旱性比较及对外源ABA响应[D];南京农业大学;2014年
5 韩璐;OsABA8ox2-RNAi转基因水稻鉴定及ABA相关基因表达分析[D];哈尔滨师范大学;2014年
6 齐光;黑龙江省主栽水稻品种苗期耐冷鉴定及ABA对苗期耐冷的调节作用[D];东北农业大学;2008年
7 刘子会;干旱胁迫下玉米ABA和pH与钙信使的关系研究[D];河北师范大学;2004年
8 王英哲;低温胁迫下紫花苜蓿对外源SA和ABA的生理响应[D];吉林农业大学;2012年
9 王娟;干旱条件下外源ABA提高烟草幼苗抗旱性的作用机制[D];东北林业大学;2014年
10 张静媛;ABA对拟南芥根系皮层细胞水力学特性的影响[D];西北农林科技大学;2013年
,本文编号:2145425
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2145425.html