全氟辛烷基磺酸与纳米氧化锌对斑马鱼联合毒性效应研究
[Abstract]:The toxicity of pollutants to organisms is the focus of attention at present. Perfluorooctane sulfonate (PFOS, C8F17SO3) is a class of persistent organic pollutants, which have liver, nerve, reproductive and developmental toxicity to organisms. Because PFOS is widely used in daily processing products, and in soil The extensive detection of soil, water and organism has caused serious harm to people's health, and its toxicity is also a hot spot in recent years. The nano Zinc Oxide (Nano-ZnO) is a typical nano metal oxide. Its unique chemical properties make it use more and more.NanoZnO to enter the organism through skin and in body. The toxicity of PFOS and Nano-ZnO in the environment is increasing, and the potential coexistence of them in the water is increasing. It is very necessary to explore the compound exposure toxicity of the aquatic organisms and its mechanism of action. This paper studies the combined exposure of PFOS and Nano-ZnO to zebrafish. The effects of developmental toxicity, thyroid toxicity and reproductive toxicity and its toxic mechanism provide a basic study for the emergency treatment of the effects of compound exposure to fish on the toxicity of fish, and provide a scientific basis for the analysis of the ecological risk of pollutant water. According to the results of the acute toxicity test, the LC50 values of 96 h PFOS and Nano-ZnO are 3.502 mg/L and 60 mg, respectively. /L. also designed PFOS and Nano-ZnO effect compound exposure and (P 0.4+Z 50), (P 0.8+Z 50) and (P 1.6+Z 50) composite exposure group for 96 h embryo development toxicity test. The effects of thyroid toxicity, combined toxicity types and possible toxic mechanisms were analyzed. Finally, the effects of equal effect exposure on the reproductive toxicity and offspring embryo quality of zebrafish were investigated using (P 0.05+Z 1.7) (P 0.1+Z 3.4) and (P 0.2+Z6.75) treatment group. The results were as follows: (1) the exposure of PFOS and Nano-ZnO could cause acute toxicity of embryo. After PFOS and Nano-ZnO combined exposure, the acute toxicity of the embryo was enhanced by the addition of.Nano-ZnO, which significantly enhanced the mortality and deformity rate induced by PFOS, and inhibited the hatchability and heart rate of the embryo. Exposure to oxidative stress and cell apoptosis induced by exposure to.Nano-ZnO increased the activation of PFOS to the activity of oxidative stress kinase (SOD, GPx and MDA) and apoptosis enzyme (Caspase-3 and Caspase-9), up regulation of apoptosis related genes (p53, Bax, Bcl-2, caspase-3 and caspase-9), and inhibition of oxidative stress. The expression of gene (SOD1, Cat and GPx1a). The cause of toxicity enhancement after the compound exposure may be due to the unique chemical properties of PFOS, which changes the permeability of the cell membrane, which makes the small size large molecular pollutants (Nano-ZnO) more easily entered into the membrane, and then affects some important enzyme activities and hormone secretion in the body, resulting in the internal residue of Nano-ZnO cells. (2) the developmental toxicity of two species of Nano-ZnO and PFOS increased the developmental toxicity of 14 d in young fish, and (P 0.8+Z 25) and (P 0.8+Z 50) mg/L compound exposure group significantly increased the mortality and malformation rate of young fish, and inhibited the addition of.Nano-ZnO in young fish to PFOS for T3. The content of.Nano-ZnO was significantly enhanced and the expression of TSH beta and TR alpha gene was inhibited significantly by the addition of T4 content, and the expression of TR beta, Deio1, Deio2, NIS and CRH genes was up-regulated, and the expression of TG, TTR gene and protein were inhibited, but the TPO gene surface level was not affected. In the membrane, it interferes with the function of the juvenile thyroid axis, affecting the absorption, synthesis, transportation and binding of the thyroid hormone nuclear receptor, destroying the HPT axis action site, destroying the thyroid hormone balance in the body and causing a series of harm to the growth and development of the young fish, which may be the primary toxicity of PFOS and Nano-ZnO to the hypothyroidism of young fish. (3) complex exposure can increase the number of cumulative deaths in the parent zebrafish, inhibit the growth of body weight and body length, reduce the amount of egg production and egg protein in the embryo, but do not affect the value of the adult gonadal finger, indicating that the compound exposure does not affect the weight of the ovaries and the sperms of the zebrafish. In the compound exposure group, the comet tail distance and micronucleus rate also increase with the increase of exposure concentration, indicating that Nano-ZnO can enhance the damage degree of PFOS to the DNA of zebrafish blood cells. (P 0.1+Z 3.4) and (P0.2+Z 6.75) compound treatment group It can significantly reduce the content of T in the male body and not affect the content of T in the female fish, but the inhibitory effect on the content of E2 in the female fish is obvious, but it has no effect on the E2 content in the male fish, which indicates that the compound exposure affects the secretion of sex hormone in the zebrafish body, and the.Nano-ZnO alone exposure has no significant influence on the expression of the Vtg1 base, but with the PFOS compound storm. After exposure, the expression of Vtg1 gene in the liver tissue of zebrafish was inhibited significantly, and the yolk protein content in the offspring embryos was affected. The compound exposure increased the mortality of the juvenile fish, reduced the fertilization rate and hatchability of the eggs, and had no significant influence on the length and the malformation rate of the offspring. The possible reasons for the enhancement of reproductive toxicity after the compound exposure were the possible reasons for the increase of reproductive toxicity. The presence of Nano-ZnO in the environment may interfere with the developmental toxicity of PFOS to zebrafish, thyroid toxicity and reproductive toxicity, and combined toxicity, and thus contaminate the body. Risk assessment can not only start from the toxicity of a single pollutant, but also consider the interaction trend of compound pollutants, so as to make a reasonable risk assessment and protect the health of the public.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:X171.5
【相似文献】
相关期刊论文 前10条
1 周炳;赵美蓉;黄海凤;;4种农药对斑马鱼胚胎的毒理研究[J];浙江工业大学学报;2008年02期
2 ;法国科学家发现斑马鱼造血干细胞生成机理[J];广西科学院学报;2010年01期
3 陈粉丽;张松林;李运彩;;斑马鱼胚胎毒理学研究进展[J];湖北农业科学;2010年06期
4 刘在平;张松林;;斑马鱼在环境保护中的应用[J];中国环境监测;2011年04期
5 王雪;王希敏;刘可春;韩利文;袁延强;;斑马鱼胚胎在毒理学研究中的应用[J];山东科学;2011年06期
6 刘丽丽;王健;王海胜;余凯敏;李国超;闫艳春;;斑马鱼转基因平台的建立[J];生物技术通报;2013年10期
7 朱琳,史淑洁;斑马鱼胚胎发育技术在毒性评价中的应用[J];应用生态学报;2002年02期
8 董武,杨景峰,王思珍,高原,解颜炯,马国文;二VA英污染引起的特异性下颌短小—斑马鱼下颌形态学检测[J];内蒙古民族大学学报(自然科学版);2005年03期
9 蔡翔,王捷,王颖;应用胚胎检测技术评价氟吗啉对斑马鱼胚胎-幼体发育的影响[J];农药;2005年06期
10 张立凤;钟涛;桂永浩;;外源性视黄酸对斑马鱼心血管系统发育的影响[J];中国实验动物学报;2006年02期
相关会议论文 前10条
1 马雯雯;杭晓明;王巍;刘聪;孙野青;;模拟微重力影响斑马鱼胚胎发育的蛋白质组特征[A];“基因、进化与生理功能多样性”海内外学术研讨会暨中国生理学会第七届比较生理学学术会议论文摘要[C];2009年
2 张利军;史慧勤;彭双清;;基于斑马鱼模式动物的阿霉素心脏毒性作用研究[A];2010年全国药物毒理学学术会议论文集[C];2010年
3 王晗;;斑马鱼生物钟调节的分子遗传和基因组机制[A];2011年全国时间生物医学学术会议论文集[C];2011年
4 林秀坤;;斑马鱼作为抗肿瘤药物模型的分子基础[A];第四届中国肿瘤大会中国药理学会肿瘤药理专业委员会分会场学术会议论文摘要[C];2006年
5 侯佳;桂永浩;张立凤;王跃祥;宋后燕;钟涛;;视黄酸缺乏对斑马鱼胚胎心脏发育的影响[A];中华医学会第五次全国儿科中青年学术交流大会论文汇编(上册)[C];2008年
6 陈锡强;韩利文;王希敏;王思锋;侯海荣;刘可春;;促渗剂氮酮对斑马鱼胚胎的透皮作用及其毒性影响(英文)[A];2012年中国药学大会暨第十二届中国药师周论文集[C];2012年
7 于永利;杨景峰;王思珍;董武;;高残留农药福美双对斑马鱼胚胎体节以及脊索的影响[A];持久性有机污染物论坛2010暨第五届持久性有机污染物全国学术研讨会论文集[C];2010年
8 巴雅斯胡;杨景峰;于永利;王思珍;董武;;高残留农药代森锌诱导斑马鱼胚胎脊索变形[A];持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会论文集[C];2011年
9 张利军;郭家彬;苑晓燕;史慧勤;赵君;束玉磊;彭双清;;应用斑马鱼胚胎和幼鱼评价布洛芬的心脏毒性[A];2013年(第三届)中国药物毒理学年会暨药物非临床安全性评价研究论坛论文摘要[C];2013年
10 朱小山;朱琳;李燕;端正花;;富勒烯(C_(60))对斑马鱼胚胎发育毒性的初步研究[A];第三届全国环境化学学术大会论文集[C];2005年
相关重要报纸文章 前8条
1 刘妍;美国培育出终生透明的斑马鱼[N];中国渔业报;2008年
2 本报记者 滕继濮;小小斑马鱼 大大有用处[N];科技日报;2010年
3 枫叶 编译;筛选药物:斑马鱼责任重大[N];医药经济报;2012年
4 记者 熊琳晖 通讯员 孙慧;研究斑马鱼揭示器官再生之谜[N];长江日报;2013年
5 罗刚 李兵;斑马鱼破译人类基因的先锋[N];健康报;2004年
6 记者 李学梅;斑马鱼为治疗白血病提新思路[N];新华每日电讯;2010年
7 本报记者 许琦敏;静候那一点流星似的光亮[N];文汇报;2012年
8 本报记者 许琦敏;刘廷析 “掘宝”斑马鱼世界[N];文汇报;2011年
相关博士学位论文 前10条
1 管翊闳;核仁因子Def磷酸化修饰调控细胞周期和p53降解的研究[D];浙江大学;2015年
2 胡晶莹;环境雌激素影响斑马鱼生殖系统发育机制的初步研究[D];复旦大学;2011年
3 赵婷;Karsch-Neugebauer综合征斑马鱼模型的建立和行为学观察[D];复旦大学;2014年
4 王健;新型斑马鱼模型在研究肿瘤浸润、转移和血管侵袭机制中的应用[D];山东大学;2015年
5 王明勇;斑马鱼生物钟基因per2突变体的构建及在生物钟系统中的功能分析[D];苏州大学;2014年
6 龚璐;p53及其异构体△133p53/△113p53在人类细胞和斑马鱼中的功能及生物学意义研究[D];浙江大学;2015年
7 郭翠翠;斑马鱼D3b基因结构及其在胚胎发育中的作用研究[D];上海交通大学;2014年
8 沈兵;致癌染料的生理毒性及分子机制研究[D];浙江大学;2015年
9 张庆友;斑马鱼Mil/s1pr2和vmhc基因的功能研究及药源性心脏毒性模型的建立[D];北京协和医学院;2011年
10 杨梅;乙草胺对斑马鱼的发育和生殖内分泌干扰机制研究[D];浙江大学;2015年
相关硕士学位论文 前10条
1 崔俊安;稀土对斑马鱼胚胎发育的影响[D];青岛科技大学;2011年
2 吴二社;nano-TiO_2,nano-Ag对斑马鱼胚胎发育的毒理学研究[D];西北师范大学;2012年
3 温鼎声;利用模式生物斑马鱼对化合物心脏毒性和急毒性筛选的研究[D];华南理工大学;2012年
4 梁荣朝;丙烯酰胺对斑马鱼生物余能的影响及对其肝、鳃毒性的作用[D];哈尔滨商业大学;2013年
5 海洋;鱼藤素对斑马鱼胚胎CyclinD1的表达调控及相关抗肿瘤机制研究[D];华南理工大学;2015年
6 蒋宇霞;东江流域沉积物生物毒性及其沉积物质量综合评价[D];中国科学院研究生院(广州地球化学研究所);2015年
7 袁忠月;壳聚糖纳米载体对神经系统影响的研究[D];浙江大学;2015年
8 余凯敏;毒死蜱对斑马鱼胚胎的毒性机制研究[D];中国农业科学院;2015年
9 罗茜;斑马鱼生长抑素-1基因靶向敲降和营救以及基于表达谱的胚胎发育功能分析[D];西南大学;2015年
10 胡月阳;UBE2C基因在斑马鱼胚胎发育中的时空表达规律[D];河北医科大学;2015年
,本文编号:2175234
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2175234.html