BCAS2在小鼠精子发生中的功能和机制研究
[Abstract]:Spermatogenesis is a very dynamic and complex process, which mainly goes through three stages: spermatogonia mitosis, spermatogonial meiosis and sperm cell deformation, resulting in haploid long spermatozoa. Every stage of spermatogenesis requires precise regulation of gene expression. As a very important gene post-transcriptional regulation, variable splicing greatly increases the diversity of transcription and translation products in higher eukaryotes and complex organs. Numerous studies have shown that variable splicing regulates the expression and function of genes associated with spermatogenesis. In addition, many splicing factors present cellular or developmental specific expression patterns in the testis. These results suggest that variable splicing may play an important role in the regulation of spermatogenesis. BCAS2 (breast carcinoma amplified sequence 2) is the core component of Prp19 related complex and participates in important life activities such as splicing of precursor RNA. Our previous study found that BCAS2 has a specific expression pattern in male germ cells. In this study, the mouse model of spermatogonial stem cell knockout BCAS2 was used to study whether BCAS2 was involved in the splicing of spermatogenesis. Through the immunostaining of BCAS2 during testicular development and the enrichment of spermatogenic cells, it was found that the expression of BCAS2 in spermatogonial stem cells of mouse testis was relatively high. Vasa-Cre mediated germ cell specific knockout of BCAS2 in male mice. It was found that the deletion of BCAS2 resulted in abnormal spermatozoa, which showed that the number of germ cells in the early stage of the first meiosis was significantly down-regulated. The key events of meiosis (recombination and association) were not observed. The number, location, proliferation and apoptosis of spermatogonial stem cells were detected by staining and statistics. It was found that the spermatogonial stem cells in the testis with BCAS2 deletion developed normally, but a large number of spermatocytes were absent in the early stage of the first meiosis. The expression of STRA8, a key factor in meiosis initiation, was also down-regulated, indicating that the testis with BCAS2 deletion could not initiate meiosis normally. In order to further elucidate the mechanism of BCAS2, RNA deep sequencing of normal and BCAS2 knockout testis of mice on the 9th day after birth (P9) was carried out. The results showed that the gene expression of testicular transcriptome without BCAS2 was basically normal. But the expression of tubulin, the target gene of splicing, changed obviously, suggesting that BCAS2 may play a role in splicing. In order to study the function of BCAS2 in pre-mRNA splicing, we further studied the change of variable splicing in BCAS2 missing testis. The results showed that the variable splicing of 245 genes was abnormal in the testis with BCAS2 deletion, including 6 genes (Dazll Ehmt2, Hmga1Hmga1), which played an important role in spermatogenesis. Using semi-quantitative RT-PCR and real-time RT-PCR, we have successfully verified the variable splicing anomalies of Dazln Ehmt2 and Hmga1. In addition, the deletion of BCAS2 resulted in abnormal expression of DAZL transcripts: the full-length transcripts were significantly down-regulated, while the expression of deletion exon 8 was significantly increased. Moreover, the total expression of DAZL protein was significantly down-regulated. In conclusion, this study demonstrated that BCAS2 was involved in the variable splicing of mouse spermatogonial stem cells, and was essential to the initiation of meiosis and the maintenance of male fertility. This study revealed for the first time the important event of variable splicing regulating the initiation of meiosis during spermatogenesis, and provided a new idea for studying the initiation of mammalian meiosis. It also provides an important theoretical basis for the study of the physiological function of variable splicing.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:Q132.1
【相似文献】
相关期刊论文 前10条
1 黄朝晖,王金福;可变剪接与细胞凋亡调控[J];生命的化学;2000年04期
2 陈学平,武耀廷,郭家明,张成,马飞;人类1号染色体可变剪接与普通剪接基因同义密码子的使用分析 I.同义密码子偏爱使用分析(英文)[J];安徽农业大学学报;2004年01期
3 李稚锋,王正志,张成岗;真核基因可变剪接研究现状与展望[J];生物信息学;2004年02期
4 彭正羽;张薇;陈献华;徐平;;神经胶质瘤中前体mRNA可变剪接研究进展[J];生物化学与生物物理进展;2007年10期
5 杭兴宜;邓明华;孙志贤;张成岗;;外显子芯片的数据分析和可变剪接预测的新算法[J];军事医学科学院院刊;2009年05期
6 王科俊;吕俊杰;冯伟兴;王鑫;;可变剪接与疾病的生物信息学研究概况[J];生命科学研究;2011年01期
7 章天骄;;可变剪接的生物信息数据分析综述[J];生物信息学;2012年01期
8 高亚梅;韩毅强;;癌症与可变剪接[J];生物技术通讯;2007年06期
9 邢永强;张利绒;罗辽复;陈伟;;老鼠基因组盒式外显子和内含子保留型可变剪接位点预测[J];内蒙古大学学报(自然科学版);2009年05期
10 蒋琰;惠静毅;;染色质结构与mRNA可变剪接[J];生命的化学;2014年04期
相关会议论文 前5条
1 张继业;任长虹;庞剑会;赵娜;刘虎岐;张成岗;;可变剪接在缺氧应答中的调控作用[A];Proceedings of the 8th Biennial Conference of the Chinese Society for Neuroscience[C];2009年
2 周春燕;张朵;张晓;富显果;廖娟;兰风华;;人eIF2B4基因一个新型可变剪接产物及其鉴定[A];中国的遗传学研究——遗传学进步推动中国西部经济与社会发展——2011年中国遗传学会大会论文摘要汇编[C];2011年
3 肖锐;孙涛;吴同彬;魏然;卓晓宇;付向东;张翼;;大规模RNA干扰筛选具有可变剪接调控蛋白[A];湖北省暨武汉市生物化学与分子生物学学会第八届第十七次学术年会论文汇编[C];2007年
4 富显果;廖娟;郭小燕;严爱贞;张朵;郑德柱;兰风华;;FMR1基因的可变剪接及其意义[A];第九届全国遗传病诊断与产前诊断学术交流会暨产前诊断和医学遗传学新技术研讨会论文集[C];2014年
5 黄正洋;陈阳;李欣钰;甄霆;张扬;徐琪;赵文明;陈国宏;;鸭TLR4基因可变剪接体的克隆、鉴定及组织表达分析[A];中国畜牧兽医学会家禽学分会第九次代表会议暨第十六次全国家禽学术讨论会论文集[C];2013年
相关博士学位论文 前10条
1 富显果;FMR1基因的可变剪接及其意义[D];福建医科大学;2014年
2 李龙;毛竹笋生长时空变化规律和生长素相关基因分析[D];中国林业科学研究院;2016年
3 刘文博;BCAS2在小鼠精子发生中的功能和机制研究[D];中国科学技术大学;2017年
4 诸葛坚;细胞色素P450 2D6和2C18的可变剪接研究[D];浙江大学;2003年
5 吕俊杰;采用智能方法的可变剪接调控机制与相关疾病研究[D];哈尔滨工程大学;2012年
6 武鹏;肝脏不同类型细胞基因表达及可变剪接的研究[D];中国人民解放军军事医学科学院;2014年
7 刘舒云;小鼠基因sidt2的可变剪接研究及功能初步探讨[D];中国人民解放军军事医学科学院;2008年
8 徐佳熹;基于比较基因组学和mRNA高通量测序的可变剪接外显子进化研究[D];复旦大学;2011年
9 詹雷雷;RNA互斥可变剪接的进化和调控机制的研究[D];浙江大学;2011年
10 杭兴宜;利用外显子芯片研究缺血/缺氧损伤相关的剪接调控机制[D];中国人民解放军军事医学科学院;2009年
相关硕士学位论文 前10条
1 胡兴;基于最优搜索的基因可变剪接的预测[D];电子科技大学;2008年
2 章天骄;基因组可变剪接特征分析与预测[D];哈尔滨工业大学;2011年
3 曹新茹;家蝇铁蛋白基因的克隆、表达及功能分析[D];河北大学;2015年
4 戴岚芝;果蝇CG30427 mRNA前体3'端互斥可变剪接的调控机制研究[D];浙江大学;2015年
5 刘阳;拟南芥形态和生理进化的比较研究[D];山东农业大学;2015年
6 张珊珊;基于RNA-Seq数据的小鼠神经发育中可变剪接的研究[D];南京航空航天大学;2015年
7 杨海龙;玉米穗部低氮响应可变剪接的鉴定[D];中国农业科学院;2015年
8 周志强;Mstn基因敲除大鼠模型的建立及表型的初步分析Fkbp51基因敲除对小鼠肝脏转录组基因可变剪接的影响[D];北京协和医学院;2016年
9 李春晓;肿瘤转移相关基因1(MTA1)对mRNA可变剪接调控的作用研究[D];北京协和医学院;2016年
10 李慧;HuR通过拮抗内含子中嘧啶富集区的作用调节WT1+/-KTS亚型的可变剪接[D];大连医科大学;2016年
,本文编号:2186418
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2186418.html