最小二乘和总体最小二乘问题的条件数研究
[Abstract]:It is well known that the least square (LS) and the total least squares (TLS) are two important methods in scientific calculation. The condition number characterizes the sensitivity of the solution of a problem to the small perturbation of the input data. The study of the condition number is an important subject of matrix perturbation analysis and numerical analysis. In recent years, a large number of scholars have done a lot of work on the condition number of LS and TLS problems. In this paper, we continue to study the conditional numbers of LS and TLS problems. The main work includes the following five parts: in the first part, we discuss the conditional numbers of Tikhonov regularization solutions. First of all, we give the relative norm type, mixed type and component type condition number of Tikhonov regularization solution when the coefficient matrix, regularization matrix and right term vector are disturbed at the same time, and generalize the results in [Chu et al.,Numer.Linear Algebra Appl.2011,18 (1): 87-103]. Secondly, we study the structural condition number of Tikhonov regularization solution when the coefficient matrix A has a linear structure. In the second part, we study the condition number theory of LS problem with multiple right end terms. Under the assumption that the coefficient matrix is a column full rank matrix and a rank deficient matrix, we study the norm type, mixed type and component type condition number of the LS problem with multiple right end terms, respectively. The results generalize the condition number of LS problem with single right end term. In the third part, the condition number of TLS problem with single right end term is studied. First of all, the exact expressions and upper bounds of the mixed and component type condition numbers of the single right term TLS problem are given, and then, when the coefficient matrix of the single right term TLS problem has a linear structure (the following triangulation Toeplitz or Hankel structure) and Vandermonde,Cauchy nonlinear structure, We give its structured condition number. Numerical examples show that the structured conditional number is indeed smaller or even much smaller than the unstructured condition number. In the fourth part, we discuss the condition number of linear function truncating TLS (T-TLS) solution. We give the exact expressions and upper bounds of the norm type, mixed type and component type condition number of the linear function LTxk of the T-TLS solution, where xk is the T-TLS solution with truncated level k. The results obtained in this part extend or improve the results in the known literature. In addition, we give two statistical estimates of LTxk's condition numbers of absolute norm type. Numerical examples show that the upper bound of the conditional number and these two statistical estimates are indeed good estimates of the corresponding true values. In the fifth part, we study the condition number of multi-right TLS problem. As far as we know, there is no literature on this issue. First, when there is a unique solution to the multi-right term TLS problem, we give the exact expression and upper bound of the norm type, mixed type and component type condition number. These results generalize the conditional number theory of the single right end TLS problem. In addition, we give how to use the power method to calculate the condition number of absolute norm type. Then, we give the upper bounds of the norm type, mixed type and component type condition number of the minimal Frobenius norm solution for the multi-right term TLS problem with innumerable multiple solutions. The numerical results show that these upper bounds are compact.
【学位授予单位】:兰州大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O241.5
【相似文献】
相关期刊论文 前10条
1 刘玉霞;周继东;;关于非线性方程条件数的注记[J];河海大学学报(自然科学版);2007年03期
2 陈果良;;两类条件数达极小的进一步研究[J];华东师范大学学报(自然科学版);1988年01期
3 张永军;吴磊;林立文;赵家平;;摄影测量中病态问题的条件数指标分析[J];武汉大学学报(信息科学版);2010年03期
4 雷光耀,黄朝晖;高阶ICCG误差阵模与条件数的估计[J];计算物理;1999年03期
5 虞笑韵,张如迎;广义Bott-Duffin逆的扰动界(英文)[J];复旦学报(自然科学版);2003年02期
6 王学锋;刘新国;;KKT系统结构条件数与条件数的比较[J];计算数学;2006年02期
7 匡蛟勋;;关于线性算子ω—条件数的进一步研究[J];上海师范学院学报(自然科学版);1983年03期
8 雷光耀,黄朝晖;ICCG法误差阵模与条件数的估计[J];计算物理;1996年04期
9 韦亮;王川龙;;关于矩阵凸组合条件数的上界[J];太原师范学院学报(自然科学版);2012年01期
10 杜鸿科;Banach空间上线性算子的伪条件数[J];数学研究与评论;1986年02期
相关会议论文 前1条
1 杨本立;;矩阵的角条件数[A];数学·物理·力学·高新技术研究进展——1998(7)卷——中国数学力学物理学高新技术交叉研究会第7届学术研讨会论文集[C];1998年
相关博士学位论文 前1条
1 孟令胜;最小二乘和总体最小二乘问题的条件数研究[D];兰州大学;2016年
相关硕士学位论文 前6条
1 耿雪;二次矩阵方程混合型与分量型条件数[D];中国海洋大学;2014年
2 陈成;若干特殊矩阵的条件数[D];南京信息工程大学;2012年
3 陈觉平;Drazin逆的条件数及其奇异线性系统的条件数研究[D];复旦大学;2008年
4 吴池业;Drazin逆的扰动理论及Pseudo-Drazin逆的条件数[D];电子科技大学;2007年
5 顾超;加权Drazin逆和奇异线性方程组的条件数及它们的条件数[D];上海师范大学;2004年
6 郭美丽;MEI方程病态性研究[D];电子科技大学;2006年
,本文编号:2212384
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2212384.html