热带气旋重力波的激发和传播机制研究
[Abstract]:Atmospheric gravity waves, which can transmit momentum and energy to the background atmosphere continuously during their upward propagation, are considered to be the most important physical processes in the coupling process between the lower and middle atmosphere. Strong convection is also one of the most important wave sources to excite atmospheric gravity waves, especially in the tropics. Typhoons (or tropical cyclones in the South Pacific region) formed in the Northwest Pacific region are large-scale strong convective systems capable of generating convective gravity waves with wavelengths of several hundred kilometers and periods of several hours. Typhoon gravity waves form in the troposphere around the typhoon track and can propagate horizontally and vertically. Typhoon gravity waves play an important role in momentum transmission in the upper and middle atmosphere and affect global atmospheric circulation. In recent decades, researchers have spared no effort to explore the use of observation and numerical simulation methods. Force wave activities, including excitation sources, wave characteristics, and physical processes. Although typhoon gravity waves are very important to global atmospheric circulation, current observational instruments are not able to quantify typhoon gravity waves at sufficient time and spatial resolution. Due to the adverse weather conditions during typhoons and the limitations of observational equipment, existing views are available. The characteristics of typhoon gravity waves can not be accurately measured by measuring equipment such as lidar, airglow imager and satellite. The gravity waves excited by typhoon "dandelion" in 2004 were studied by using the AIRS (Atmospheric Infrared Sounder) detector and the Weather Re-search and Forecasting (WRF) model. The typhoon was closed in late June 2004. In order to further explore the typhoon gravity, we analyzed the brightness temperature of the 4.3 micron band of the AIRS detector and found that there is a semi-circular gravity wave structure over Taiwan with a horizontal range of 100-400 kilometers. The model reproduces the main features of typhoon and gravity waves. The horizontal wavelengths of typhoon gravity waves in the model are also in the range of 10 (0-400 km). Analyzing the vertical propagation of gravity waves, it is found that gravity waves propagate mainly upward and eastward in the stratosphere, while most westward propagating gravity waves are filtered out by the background wind field. Because prevailing winds prevent the upward propagation of mountain waves, there are few examples of detecting and studying mountain waves in summer in low latitudes. This paper will study the upward propagation of mountain waves produced by typhoon "dandelion" in 2004 over Taiwan Island (July 1-3, 2004). With the gravity wave information simulated by the WRF-FLAT model, we find that the momentum flux of the mountain wave excited by a typhoon passing through the Central Mountains of Taiwan accounts for about 50% of the total momentum flux of the tropospheric gravity wave, and the dominant direction of the mountain wave is perpendicular to the Central Mountains. It is found that mountain waves can be excited both before and after typhoon landfall, but only before typhoon landfall can mountain waves propagate upward to the stratosphere, because before typhoon landfall, both the troposphere and stratosphere are westward background wind fields, which can not form a barrier to mountain wave propagation. Zero Wind Layer. Since dozens of typhoons or tropical cyclones land in the Pacific each year, it is important to study the propagation of these tropical Cyclone-Related mountain waves. Based on the e-Model, a high-precision global atmospheric circulation model (model accuracy ~0.25 degrees) has been developed to analyze mesoscale atmospheric activities. The model captures mesoscale activities, such as tropical cyclone events in the eastern Australian sea area (167 degrees E, 20 degrees S), and a semi-circular gravity wave structure has been found above. To explore the coupling between global and local models, and to test the necessity of analysing gravity waves with more accurate atmospheric circulation models, we designed a scaling method, which uses the output data of WACCM model to drive the WRF model to simulate the excitation process of tropical cyclone gravity waves. The local climate model used in this paper is the WRF 3.6.1 model developed by NCAR. By comparing the results of the WACCM model with high accuracy and the WRF model with the same horizontal resolution (25 km), we found that the two models both produced approximately structured semi-circular tropical cyclone gravity waves at similar locations. A set of WRF models with different resolutions (25 km, 15 km, 10 km and 4 km) were designed to test the sensitivity of tropical cyclone gravity waves to the horizontal resolution of the model. Although all resolution models can resolve the structure of semi-circular gravity waves, the resolution is higher. At the same time, the effects of convection parameterization and convection analysis on the excitation of tropical cyclone gravity waves are also explored. It is found that the gravity waves excited by analytical convection method and convection parameterization method have little difference at the resolution of 4 km. As we all know, this is the first time that a mesoscale global circulation model is used to study tropical cyclone gravity waves.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:P444
【相似文献】
相关期刊论文 前10条
1 刘晓;徐寄遥;;重力波与不同背景风场之间的非线性相互作用[J];自然科学进展;2006年11期
2 余志豪;重力波浅谈[J];气象;1980年11期
3 吴津生,王宗皓,董双林;全球资料分析中重力波的重要性[J];气象学报;1982年02期
4 覃卫坚;寿绍文;王咏青;;大气对流层重力波研究进展[J];气象科技;2013年05期
5 王咏梅,王英鉴,徐寄遥;非线性重力波对中高层氢氧大气的影响[J];中国科学(A辑);2000年S1期
6 丁锋,万卫星,袁洪;耗散大气中风场对内重力波传播的影响[J];空间科学学报;2000年02期
7 王咏梅,徐寄遥,王英鉴;对流层上传重力波的非线性演化[J];地球物理学报;2001年02期
8 丁锋,万卫星,袁洪;耗散大气中水平不均匀风场对内重力波传播的影响[J];地球物理学报;2001年05期
9 岳显昌,易帆;下行重力波波包在可压大气中的传播[J];空间科学学报;2001年01期
10 张绍东,易帆,熊东辉;三维球坐标系下重力波波包非线性传播过程的数值研究[J];空间科学学报;2001年02期
相关会议论文 前10条
1 丁锋;万卫星;袁洪;;重力波风场滤波现象的射线跟踪研究[A];第九届全国日地空间物理学术讨论会论文摘要集[C];2000年
2 何裕金;易帆;;大气重力波观测的运动学检验[A];第十届全国日地空间物理学术讨论会论文摘要集[C];2003年
3 安英玉;;重力波特征的雷达观测与分析[A];第26届中国气象学会年会人工影响天气与大气物理学分会场论文集[C];2009年
4 安英玉;张云峰;张剑侠;;初春一次具有明显重力波特征的雷达观测与分析[A];第27届中国气象学会年会大气物理学与大气环境分会场论文集[C];2010年
5 马兰梦;张绍东;;对流层及低平流层重力波源谱的分析[A];中国地球物理学会第二十七届年会论文集[C];2011年
6 岳显昌;易帆;;有限振幅重力波在可压大气中的非线性传播[A];第十届全国日地空间物理学术讨论会论文摘要集[C];2003年
7 黄春明;张绍东;易帆;;波状扰动激发重力波波包的能量转换特性研究[A];第十届全国日地空间物理学术讨论会论文摘要集[C];2003年
8 徐寄遥;;二维大气光化学-动力学耦合的重力波模式[A];第十一届全国日地空间物理学术讨论会论文摘要集[C];2005年
9 刘晓;徐寄遥;马瑞平;;时间分裂法在重力波非线性传播数值模拟中的应用[A];第十一届全国日地空间物理学术讨论会论文摘要集[C];2005年
10 涂翠;胡雄;;大气重力波成像观测事件分析[A];第十四届全国日地空间物理学术研讨会论文集[C];2011年
相关重要报纸文章 前2条
1 单久;当心气象官能症[N];人民政协报;2002年
2 南京医科大学公共卫生学院教授 姜允申;气象官能症[N];健康报;2002年
相关博士学位论文 前9条
1 丁锋;背景风场影响下大气重力波的传播特性研究[D];中国科学院研究生院(武汉物理与数学研究所);2001年
2 丁霞;对流激发重力波及波流相互作用研究[D];武汉大学;2011年
3 吴建飞;热带气旋重力波的激发和传播机制研究[D];中国科学技术大学;2016年
4 吴少平;中高层大气中三维重力波非线性传播的数值研究[D];中国科学院研究生院(武汉物理与数学研究所);2002年
5 刘晓;重力波非线性传播及其与背景风场和潮汐相互作用的模拟研究[D];中国科学院研究生院(空间科学与应用研究中心);2007年
6 涂翠;全天空大气重力波成像仪研究[D];中国科学院研究生院(空间科学与应用研究中心);2011年
7 马兰梦;低层大气重力波源谱的无线电探空仪观测研究[D];武汉大学;2012年
8 王咏梅;气辉的非线性重力波研究及臭氧总量探测仪的研制[D];中国科学院研究生院(空间科学与应用研究中心);2003年
9 唐怡环;基于全天空OH气辉成像的中间层顶大气重力波动量通量特性研究[D];中国科学技术大学;2013年
相关硕士学位论文 前10条
1 汪亚冲;辨明大洋海啸于中性粘滞大气层的扰动响应分析[D];南京航空航天大学;2014年
2 魏栋;重力波过程中平流层对流层交换的研究[D];兰州大学;2015年
3 宫明晓;夏季华南地区深对流活动对平流层大气重力波的影响研究[D];中国海洋大学;2015年
4 余文宝;大气重力波的数值模拟和波谱分析[D];中国科学技术大学;2009年
5 王永;重力波非线性相互作用和暴雨[D];南京信息工程大学;2005年
6 李晓青;渤海南部次重力波混合的初步研究[D];中国海洋大学;2006年
7 王雪莲;利用高分辨探空资料分析热带下平流层重力波活动[D];南京信息工程大学;2006年
8 张灵杰;青藏高原上空重力波的观测和模拟分析[D];中国气象科学研究院;2010年
9 陈薇;中层风切变对海啸所引发的大气重力波之传播特性研究[D];南京航空航天大学;2013年
10 陈操;中层大气重力波的瑞利激光雷达初步研究[D];中国科学技术大学;2010年
,本文编号:2217983
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2217983.html