基于小环DNA的核酸自组装技术
[Abstract]:DNA molecule is a ubiquitous molecule in nature and an important carrier for storing genetic information. In addition, DNA has been proved to be a powerful basic material for constructing nanostructures based on the formation of double-stranded structures by various mating methods. In 1982, American scientist Professor Seeman was subjected to biological recombination of Holiday Ju knot. Inspired by the idea that the first two-dimensional and three-dimensional DNA nanostructures were constructed using only coded base complementary pairings, marking the beginning of DNA nanotechnology. Researchers in this field have constructed static structures such as two-dimensional and three-dimensional nanolattices, nanotubes, polyhedrons and functional devices with arbitrary shapes, such as molecular machines and DNA computers, and are being used in nanomedicine, molecular electronics and other fields. In the research of DNA nanotechnology, rigid DNA modules are the basis of constructing nanostructures. Recently, our research group used enzymatic synthesis of small ring DNA instead of straight chain to construct linear array of DNA rigid modules to self-assemble DNA nanostructures. In this paper, we construct DNA tiles with different modes and connections based on small-loop DNA, and self-assemble DNA nanostructures with various morphologies. The main work is as follows: 1. We construct DNA tiles with small-loop DNA as the center and other linear DNA as the supplement. Then we use two commonly used designs, namely SAE (semi-crossover, anti-parallel, and even half-turns). In addition, with the help of physical in-phase and out-of-phase concepts, we have developed a modular self-assembly method for connecting DNA tiles at very short distances (11/16 bp). Two kinds of molecular modules, SAE-E (SAE-type DNA tiles, with even half-cycle connection distance between tiles) and DAE-O (DAE-type DNA tiles, with odd half-cycle connection distance between tiles), were synthesized. The experimental results show that we can self-assemble DNA nanotubes of uniform size with SAE-E design structure. The width is about 16-20 nm and the length is over 14 nm. The design structure of DAE-E can produce slim and long layers of structure. The patterns of wool-like clusters (25-30 nm wide), scarf-like nanosheets (100-300 nm wide) and nanoribbons (100-300 nm wide) are observed. In addition, the exciting assembly process, a gradual formation of nanosheets from disordered wool clusters, is also observed. Then, we speculate the bending of nanostructures according to the rotation direction of the small-ring DNA, and explain the formation mechanism of DNA nanotubes and wavy nanowires. 2. Using DAE-O design, we construct two-dimensional nanostructures with small-ring DNA as the core, in which DAE-O is Doublecrossover, Antiparallel, and Even half-turns tiles with Odd half-turns conne. We designed three kinds of small ring DNA (42 nt, 64 nt, 84 nt) to construct DAE. The experimental results showed that the DAE with 42 nt or 64 NT centered DNA strands (linear DNA or small ring DNA) could self-assemble into regular nanostructures. In the process of DNA self-assembly, the balance between flexibility and rigidity is very important, and 64 NT DNA has the best flexibility and rigidity. So tiles with 64 NT DNA have the best results; 84 NT DNA has the lowest stiffness, while 84 nt or longer linear DNA reduces stiffness and increases flexibility in building molecular tiles, which is not conducive to the formation of polycrystalline nanostructures. 3. A three-arm module is designed with 32 NT ring DNA as the center. A four-arm module is designed with 42 NT ring DNA as the center. A semi-crossed structure is used at the apex and a double helix and 26 BP connection distance are used at the junction. The lattice structure of hexagonal and quadrilateral small holes is observed after self-assembly, but not large. Three-arm structure self-assembles to form hexagonal pore structure, and has the tendency to extend to form honeycomb-like regular pattern. At present, we have obtained the structure, there are 3-5 regular pores in the horizontal direction, and the vertical continuous arrangement can be up to 10 or so, after section analysis of some structures, we can get the inner diameter of each pore as follows 23.4 nm, close to the theoretical estimate of the hexagon; most of the four-arm structure self-assembly lines, most of which are basically the same direction of growth lines, a few of which will form two or three structures together, lines 100-200 nm long, line width 20 nm, at the same time in the local can be found small 2 x 2 or 2 x 3 grid structure, the average diameter of 13.9 nm, close to The results of electrophoresis analysis show that we can successfully construct three-arm and four-arm structures, but other hybridization, mismatch by-products may affect the formation of the overall large structure, and a single double helix connection and small size ring DNA will make the overall structure lack of rigid binding, it is difficult to form large regular structure.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:Q52
【相似文献】
相关期刊论文 前10条
1 徐耀忠;Thiobase DNA: the chemistry and some applications in cancer studies[J];Progress in Natural Science;2000年06期
2 傅衍 ,牛冬 ,阮晖 ,陈海燕;COMPARISON OF DIFFERENT ENZYMES AND PROBES AND THEIR COMBINATIONS IN DNA FINGERPRINTING[J];Journal of Zhejiang University Science;2001年04期
3 安小惠 ,王一理 ,来宝长 ,耿一萍 ,司履生;CONSTRUCTION OF HUMAN INTERLUEKIN-18 DNA VACCINE AND IT'S EXPRESSION IN MAMMALIAN CELLS[J];Journal of Xi'an Medical University;2001年02期
4 张鹏 ,孟继本 ,龙江 ,松浦辉男 ,王永梅;Synthesis of Benzo [α]phenoxazin-5-one Derivatives and Their Interactions with DNA[J];Chinese Journal of Chemistry;2002年05期
5 ;DIFFERENT RESULTS BY DIFFERENT COMMERCIAL TAQ DNA POLYMERASE IN RAPD[J];四川动物;2002年02期
6 ;Genetic Diversity of Three Aristichthys nobilis Populations and One Inbreeding Stock[J];Wuhan University Journal of Natural Sciences;2002年02期
7 强晓艺;DNA计算的应用与展望[J];西安联合大学学报;2002年02期
8 王军阳,范桂香,胜利,袁育康;THE CONSTRUCTION AND PRELIMINARY APPRAISEMENT OF HSV-2 gD GENE DNA VACCINE[J];Academic Journal of Xi'an Jiaotong University;2002年02期
9 董菁 ,成军 ,王勤环 ,施双双 ,王刚 ,斯崇文;CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVERR EGENERATION FROM RAT[J];Chinese Medical Sciences Journal;2002年02期
10 谢传晓;Evidence for Base Substitutions and Repair of DNA Mismatch Damage Induced by Low Energy N~+ Ion Beam Implantation in E. coli[J];High Technology Letters;2003年02期
相关会议论文 前10条
1 Michael J.Siefkes;Cory O.Brant;Ronald B.Walter;;A novel real-time XL-PCR for DNA damage detection[A];渔业科技创新与发展方式转变——2011年中国水产学会学术年会论文摘要集[C];2011年
2 ;Hormonal Regulation and Tumorigenic Role of DNA Methyltransferase[A];2011中国妇产科学术会议暨浙江省计划生育与生殖医学学术年会暨生殖健康讲习班论文汇编[C];2011年
3 Dongmei Zhao;Fan Jin;Yuli Qian;Hefeng Huang;;Expression patterns of Dnmtl and Dnmt3b in preimplantational mouse embryos and effects of in-vitro cultures on their expression[A];中华医学会第十次全国妇产科学术会议妇科内分泌会场(妇科内分泌学组、绝经学组、计划生育学组)论文汇编[C];2012年
4 姜东成;蒋稼欢;杨力;蔡绍皙;K.-L.Paul Sung;;在聚吡咯微点致动下的DNA杂交行为[A];2008年全国生物流变学与生物力学学术会议论文摘要集[C];2008年
5 白明慧;翁小成;周翔;;联邻苯二酚类小分子作为DNA交联剂的研究[A];第六届全国化学生物学学术会议论文摘要集[C];2009年
6 张晔;杜智;杨斌;高英堂;;检测外周血中游离DNA的应用前景(综述)[A];天津市生物医学工程学会第29届学术年会暨首届生物医学工程前沿科学研讨会论文集[C];2009年
7 周红;郑江;王良喜;丁国富;鲁永玲;潘文东;罗平;肖光夏;;CpG DNA诱导全身炎症反应综合征的作用及其机制研究[A];全国烧伤创面处理、感染专题研讨会论文汇编[C];2004年
8 ;EFFECTS OF Ku70-DEFICIENT ON ARSENITE-INDUCED DNA DOUBLE STRAND BREAKS, CHROMOSOMAL ALTERATIONS AND CELL CYCLE ARREST[A];海峡两岸第三届毒理学研讨会论文摘要[C];2005年
9 李经建;冀中华;蔡生民;;小沟结合方式中的DNA媒介电荷转移[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年
10 ;The interaction between Levofloxacine Hydrochloride and DNA mediated by Cu~(2+)[A];湖北省化学化工学会2006年年会暨循环经济专家论坛论文集[C];2006年
相关重要报纸文章 前10条
1 本报记者 袁满;平安:把“领先”作为DNA[N];经济观察报;2006年
2 舒放;编织一个DNA纳米桶[N];医药经济报;2006年
3 闫洁;英两无罪公民起诉要求销毁DNA记录[N];新华每日电讯;2008年
4 何德功;日本制成诊断鱼病的“DNA书”[N];农民日报;2004年
5 本报记者 张巍巍;DNA样本也能作假[N];科技日报;2009年
6 周斌伟 邹巍;苏州警方应用DNA技术一年侦破案件1887起[N];人民公安报;2011年
7 本报记者 杨天笑;揭秘“神探”DNA[N];苏州日报;2011年
8 第四军医大学基础医学部生物化学与分子生物学教研室教授 李福洋;破除法老DNA的咒语[N];东方早报;2011年
9 常丽君;DNA电路可检测导致疾病的基因损伤[N];科技日报;2012年
10 常丽君;效率和质量:“DNA制造业”两大障碍被攻克[N];科技日报;2012年
相关博士学位论文 前10条
1 唐阳;基于质谱技术的基因组DNA甲基化及其氧化衍生物分析[D];武汉大学;2014年
2 池晴佳;DNA动力学与弹性性质研究[D];重庆大学;2015年
3 胡璐璐;哺乳动物DNA去甲基化过程关键酶TET2的三维结构与P暬蒲芯縖D];复旦大学;2014年
4 马寅洲;基于滚环扩增的DNA自组装技术的研究[D];南京大学;2014年
5 黄学锋;精子DNA碎片的临床意义:临床和实验研究[D];复旦大学;2013年
6 隋江东;APE1促进DNA-PKcs介导hnRNPA1磷酸化及其在有丝分裂期端粒保护中的作用[D];第三军医大学;2015年
7 刘松柏;结构特异性核酸酶FEN1在DNA复制及细胞周期过程中的功能性研究[D];浙江大学;2015年
8 王璐;哺乳动物中亲本DNA甲基化的重编程与继承[D];中国科学院北京基因组研究所;2015年
9 齐文靖;染色质改构蛋白BRG1在DNA双链断裂修复中的作用及机制研究[D];东北师范大学;2015年
10 龙湍;水稻T-DNA插入突变群体侧翼序列的分离分析和OsaTRZ2的克隆与功能鉴定[D];华中农业大学;2014年
相关硕士学位论文 前10条
1 董洪奎;面向可视化纳米操作的DNA运动学建模及误差实时校正方法[D];沈阳理工大学;2014年
2 闻金燕;水溶性羧基和吡啶基咔咯大环与DNA和人血清蛋白的相互作用[D];华南理工大学;2015年
3 江怿雨;水溶性羧酸卟啉及其配合物与DNA和人血清蛋白的相互作用[D];华南理工大学;2015年
4 高志森;比较外周游离循环肿瘤DNA与癌胚抗原监测非小细胞肺癌根治术前后肿瘤负荷变化的初步研究[D];福建医科大学;2015年
5 丁浩;血浆循环DNA完整性及多基因甲基化对肺癌诊断价值的研究[D];河北大学;2015年
6 王鹏;基于碳点@氧化石墨烯复合材料DNA生物传感器的构建及用于PML/RARα基因检测[D];福建医科大学;2015年
7 李海青;转碱篷和盐角草总DNA的耐盐紫花苜蓿的选育[D];内蒙古大学;2015年
8 李婷婷;小鼠DNA模式识别重要受体的分子结构特征及其功能研究[D];中国农业科学院;2015年
9 刘瑞斯;抗癌药物奥沙利铂与DNA相互作用的原子力显微镜观察研究[D];东北林业大学;2015年
10 熊忠;芳香二肽与一价金属离子间相互作用及DNA切割活性的研究[D];郑州大学;2015年
,本文编号:2247339
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2247339.html