拟南芥微丝相关蛋白SCRP1调节气孔运动的功能研究
[Abstract]:Microfilaments are a kind of filamentous network which is ubiquitous in eukaryotic cells and is always in the dynamic process of depolymerization. The dynamic changes of microfilaments in plants are involved in the regulation of many cell processes, such as cell division, cell morphogenesis, cell movement, cell polarity growth and so on. Recent studies have shown that the dynamic changes of microfilament skeleton are also involved in the regulation of plant responses to biotic and abiotic stresses. The dynamic changes of microfilaments in cells are regulated by various microfilament binding proteins and microfilament related factors. The switch movement of guard cells is an important regulation mechanism of plant response to external stimuli. The rearrangement of microfilaments in guard cells is involved in the regulation of the movement of guard cells. More and more studies have shown that the orientation of microfilaments, the thickness and density of filaments in guard cells are closely related to the opening of guard cells. However, we do not know much about the specific protein factors involved in the regulation of microfilaments in guard cells. In this paper, by using the method of forward genetics, a mutant scrp1. with fast loss of water was obtained by the experimental analysis of leaf water loss of T-DNA mutants ordered by ABRC. The mutant has T-DNA insertion into the Arabidopsis SCRP1 gene, resulting in a functional deletion of the SCRP1 gene. The SCRP1 gene encodes a silk / threonine protein kinase. Our results showed that the expression of SCRP1 gene was up-regulated by ABA, which was involved in the regulation of stomatal closure induced by ABA. SCRP1 was associated with microfilament protein and was colocated with microfilament protein in cells. It has the function of stabilizing the microfilaments in the guard cells and participates in the regulation of the dynamic changes of the microfilaments in the guard cells. However, SCRP1 does not directly bind to microfilament proteins and has no direct effect on the polymerization and depolymerization of microfilaments. We found that SCRP1 could interact with microfilament depolymerization factor ADF4, and phosphorylated ADF4, could inhibit the depolymerization activity of ADF4. The absence of SCRP1 resulted in fast water loss and slow response to ABA induced stomatal closure. The microfilaments in the stomata showed the phenotype of decreasing degree of repolymerization. At the same time, we also found that ADF4 functional deletion mutants were insensitive to water loss stress and ABA treatment, and the microfilament aggregation in stomata was serious. The stomatal closure phenotype of ADF4 overexpression transgenic plants was similar to that of scrp1 mutant. Both showed that stomatal closure was insensitive to ABA treatment. Knockout of ADF4 in the background of scrp1 mutants could partially restore the phenotype of fast water loss of scrp1 mutants and delayed stomatal closure after ABA treatment. Our results show that SCRP1 is involved in the regulation of the dynamic changes of microfilaments during stomatal closure, which is achieved by interacting with ADF4 and phosphorylating ADF4, to inhibit the depolymerization activity of ADF4 microfilaments. The main innovation points and significance of this paper are as follows: 1. Previous studies have shown that microfilament depolymerization factor (ADF) is a major type of microfilament depolymerizing protein, and its activity is regulated by phosphorylation, but there are few phosphokinase known to phosphorylate ADF in Arabidopsis thaliana. This paper reports for the first time that SCRP1 can also phosphorylate ADF, which is of great significance for exploring the function of ADF. 2. Little is known about kinases that regulate the dynamics of microfilaments in guard cells. SCRP1, as a new type of microfilament-associated phosphokinase, has been reported for the first time to inhibit the depolymerization of ADF microfilaments by phosphorylated ADF,. Adjust the dynamic change of microfilament, thus adjust the stomatal movement. This is an important contribution to the study of how plant cytoskeleton responds to external signal stimuli by regulating the movement of guard cells.
【学位授予单位】:山东师范大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q945
【相似文献】
相关期刊论文 前10条
1 后横;;微丝动力学很多问题但很少答案[J];国外医学情报;1988年05期
2 杨坤,王琦,李艳红;植物微丝骨架研究进展[J];首都师范大学学报(自然科学版);2004年S1期
3 安美文,吴文周,陈维毅,曲华,滕维中;基于微丝主动收缩的细胞分裂的力学模型[J];力学学报;2005年03期
4 买霞,陈莉,徐瑞成;微丝在体外培养四种不同细胞表达的形态观察[J];武警医学院学报;2005年02期
5 邢艳丽;李静;耿美玉;;细胞迁移中微丝微管的变化及其信号转导通路研究进展[J];现代生物医学进展;2007年06期
6 邱鸿;于荣;;微管和微丝的相互作用[J];细胞生物学杂志;2009年04期
7 陈琼;黄善金;于荣;;植物微丝骨架动态变化的调节[J];植物生理学报;2011年01期
8 许萍,,张丕方;微丝骨架的研究进展[J];植物学通报;1995年S1期
9 雷宇华,闫芝芬,严玉平,魏建昆;微丝骨架与信号转导研究进展[J];华北农学报;2000年01期
10 刘俊梅,李岩,张红;银杏花粉的萌发及其内部微丝骨架骨的研究[J];农业生物技术学报;2001年04期
相关会议论文 前10条
1 陈建国;;微丝与细胞行为[A];中国细胞生物学学会第十届全体会员代表大会暨第十二次学术大会论文集[C];2011年
2 王端顺;徐淑惠;胡云英;马跃;孙惟东;汪X仁;;钙调素拮抗剂——三氟啦嗪对微丝组装的响影[A];中国细胞生物学学会第五次会议论文摘要汇编[C];1992年
3 彭雄波;孙蒙祥;杨弘远;;高等植物受精卵中精核的迁移依赖于微丝而不依赖于微管[A];中国细胞生物学学会2005年学术大会、青年学术研讨会论文摘要集[C];2005年
4 赵和平;任海云;;Rop1Ps对百合花粉管生长和微丝骨架排列的影响[A];中国细胞生物学学会第八届会员代表大会暨学术大会论文摘要集[C];2003年
5 樊小雪;向云;任海云;;拟南芥钙依赖性微丝结合蛋白AtABP41的分离纯化与特性分析[A];中国细胞生物学学会2005年学术大会、青年学术研讨会论文摘要集[C];2005年
6 彭雄波;严婷婷;孙蒙祥;;高等植物受精后精核迁移依赖于微丝而不依赖于微管[A];中国细胞生物学学会第九次会员代表大会暨青年学术大会论文摘要集[C];2007年
7 黄岂平;蔡绍皙;石宇;向昆仑;;基底应变可通过改变微丝骨架的张力调节Rho蛋白活性[A];第十次中国生物物理学术大会论文摘要集[C];2006年
8 邵阳光;;细胞骨架[A];中国细胞生物学学会第十届全体会员代表大会暨第十二次学术大会论文集[C];2011年
9 尹力;柳惠图;王端顺;;微丝聚合的改变对PIP_2及DG水平的影响[A];中国细胞生物学学会第五次会议论文摘要汇编[C];1992年
10 胡适宜;李春贵;;用鬼笔环肽予处理保存花粉管中微丝超微结构的方法[A];海峡两岸电子显微学讨论会论文专集[C];1991年
相关重要报纸文章 前5条
1 仙本明;生产不锈钢微丝的前景分析[N];中国建材报;2006年
2 仙本明;山东兖矿水泥厂不锈钢微丝生产线投产[N];中国建材报;2006年
3 刘德君 李荣霞;盂县不锈钢微丝项目填补省内空白[N];阳泉日报;2011年
4 江水;小企业名品占领大市场[N];江苏经济报;2006年
5 本报记者 毛庆 通讯员 张小华 郭礼华 实习生 韩斌;区里来了大学教授管科技[N];南京日报;2010年
相关博士学位论文 前10条
1 张城;NudC在微丝骨架动态变化和纤毛组装过程中的作用及调控机制研究[D];浙江大学;2015年
2 赵双双;拟南芥微丝相关蛋白SCRP1调节气孔运动的功能研究[D];山东师范大学;2016年
3 陈东明;熔体抽拉非晶微丝磁畴调控及其与GMI效应相关性[D];哈尔滨工业大学;2015年
4 时兰春;微丝、微管骨架在拟南芥细胞机械响应中的作用[D];重庆大学;2011年
5 贾红磊;植物特有微丝交联蛋白-CROLIN1的功能研究[D];兰州大学;2013年
6 樊婷婷;拟南芥微丝结合蛋白Profilin3体内生理功能研究[D];兰州大学;2012年
7 施海帆;拟南芥RIC1切割微丝调控细胞顶端生长的机制研究[D];中国农业大学;2015年
8 程云会;血管平滑肌细胞SM22α的表达调节及其功能研究[D];河北医科大学;2004年
9 赵杨勇;玻璃包覆法制备Cu-Sn和Ni-Mn-Ga形状记忆微丝及其超弹性研究[D];北京科技大学;2015年
10 安美文;真核细胞分裂过程中生化刺激与力学行为的耦合作用[D];太原理工大学;2005年
相关硕士学位论文 前10条
1 赵群;胞质微丝构架对有丝分裂纺锤体可塑性调控机制研究[D];中国科学技术大学;2014年
2 王坤;用于植入式神经接口的微丝电极阵列的研制与改性研究[D];中国人民解放军军事医学科学院;2016年
3 柯文俊;考虑微丝作用的细胞建模及细胞伪足的模拟[D];华南理工大学;2016年
4 王莹;芽再生过程中微丝骨架通过调节生长素的极性运输影响干细胞的再生[D];山东农业大学;2013年
5 陈艳梅;白gD花粉管微丝骨架介导信号传导的蛋白质组学研究[D];中国科学院研究生院(植物研究所);2005年
6 曾晶;微丝相关的微囊藻毒素毒性机理研究[D];宁波大学;2013年
7 赵艳;杂交鹅掌楸悬浮培养体细胞的微丝骨架变化[D];南京林业大学;2010年
8 李宝龙;基于找形分析的细胞骨架力学模型[D];上海交通大学;2013年
9 张姣;小麦生理型雄性不育系花药细胞内微丝骨架和胼胝质的变化及其相关基因的表达分析[D];西北农林科技大学;2015年
10 张小清;一种水稻微丝结合蛋白OsFH1的功能研究[D];上海师范大学;2014年
本文编号:2315586
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2315586.html