高压下光伏及多铁储能材料的第一性原理研究
[Abstract]:The pressure has a great influence on the composition and properties of the substance. The high pressure will shorten the atomic distance of the material, change the chemical valence state of the atom, transfer the charge transfer between the atoms, and cause the crystal structure to change, thus causing some special chemical reactions. Therefore, high-pressure physics is an important means of synthesizing and discovering new materials. The paper takes the high-pressure physics as the fulcrum, which mainly includes two parts. The first part is the research work of the photovoltaic material under high pressure, introduces the basic properties of the photovoltaic material and the method of the research and analysis, and uses the first principle to study the theory of AgInS _ 2 in the compound of the group I-III-VI. It is of great significance to find and design a new type of photovoltaic semiconductor material. The second part is based on the basic theory and application of the multi-ferromagnet electric material, and in combination with the latest development of the research at home and abroad, the properties of the multi-iron material DyNiO _ 3 under high oxygen pressure and high pressure are studied by the first principle method and the micro-physical mechanism of the magnetoelectric coupling effect is analyzed. The theoretical basis is laid for the design of this new information storage material. The specific content of this thesis is as follows: First of all, the new phase structure prediction under high pressure is carried out based on the first principle, based on the first principle, based on the first principle of the AgIn S _ 2 material in the hot spot I-III-VI compound of the present photovoltaic material. Previous experimental studies have found that CuInS _ 2 will transition to a cubic phase structure at a high pressure of 9.5GPa and with some other changes in properties. However, theoretical studies such as the crystal structure and the properties of the electron structure under the high pressure of the I-III-VI compound are rare. The theoretical simulation shows that the structure of AgIn S _ 2 at the pressure of 12. 5GPa will transition from the tetragonal phase (symmetry I-42d) to the cubic phase (symmetry is Fd-3m), which is in agreement with the conclusions of the experiment, but the phase change pressure is higher than the phase change pressure of CuInS _ 2 by 9.5GPa. In order to get a more accurate band gap, we used the hybrid HSE06 method to calculate the cubic phase band gap of AgInS _ 2 as 1. 2eV, which is closer to the ideal band gap (1. 4eV) than the band gap (about 2.0eV) of the tetragonal phase. In the calculation of the acoustic subspectrum, we find that there is no virtual frequency in the Brillouin zone, which indicates that the structure can satisfy the dynamic stability. At the same time, we used the electronic local function and the charge density of the system to analyze the form of the bond between the atoms of the compound. The optical properties of different structures under normal pressure and high pressure are compared. Based on the design angle of the new material, we use the density functional theory, the perovskite type DyNiO _ 3 synthesized with the high oxygen pressure as the research object, and the influence of U value on the property of the system in the GGA + U method is analyzed. The electronic structure, chemical bond, magnetism and ferroelectricity of the compound are studied and the source of its ferroelectric property is analyzed. The results show that the symmetry of the DyNiO _ 3 system under high oxygen pressure after spin-polarization and anti-ferromagnetic structure is changed from P21/ n to P21. The calculated electron structure properties show that the band gap of the system is 0. 715eV, which is an indirect bandgap compound. The Ni atoms in the system have the charge disproportionation. The magnetic moments of the Ni1 and Ni2 atoms are respectively 1. 703. mu.B and 0. 7710. m u.B. The coupling between the Ni-3d and the O-2p states is also found from the analysis of the system state density map. Based on the first principle, we also calculated the effective charge and the electronic local function of the system, and determined that the Ni-O bond is an ionic bond. The spontaneous polarization of the system is 6.78. m u.C/ cm2, along the direction of the lattice b axis, and the charge order of the lattice point and the key center in the system results in the formation of the ferroelectric in DyNiO _ 3. Finally, based on the first principle, the crystal structure, electronic structure, magnetism and ferroelectric property of DyNiO _ 3 under high pressure are studied. The results show that the crystal structure of DyNiO _ 3 has changed under high pressure, and the lattice constant and volume decrease with the increase of the pressure from 0GPa to 10GPa. Under the pressure of 10GPa, the crystal symmetry of DyNiO _ 3 is changed from P21 to P21/ n, and the band gap is changed from 0. 715eV at high oxygen pressure to 1. 25eV, and is an indirect bandgap compound. Through the study of the density of the system state, we have also found that the magnetic moment of the Ni1 atom bit is the same at high pressure, while the magnetic distance of the Ni2 atomic bit decreases with the increase of the pressure at 0-10GPa, resulting in the change of the magnetic structure of the system. When the pressure is greater than 6GPa, the magnetic moment of the Ni2 atomic bit disappears. the change of the magnetic structure of the crystal structure of the system eliminates the charge order of the key center in the system, leads to the disappearance of the ferroelectric property, and can realize the regulation of the ferroelectric property of the system by high voltage.
【学位授予单位】:长春理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O521
【相似文献】
相关期刊论文 前10条
1 李震宇;杨金龙;;新材料物性的第一性原理研究(英文)[J];中国科学院研究生院学报;2009年03期
2 高巍;朱嘉琦;武洪臣;张华芳;崔向中;;四面体非晶碳结构建模的第一性原理模拟方法[J];功能材料;2010年S2期
3 卢金炼;曹觉先;;单个钛原子储氢能力和储氢机制的第一性原理研究[J];物理学报;2012年14期
4 李培芳;包钢;;元素氯高压属性的第一性原理研究[J];内蒙古民族大学学报(自然科学版);2013年01期
5 甄海龙;高海;刘红梅;林巧文;;P-碳的电学、力学性质的第一性原理预测[J];山西大同大学学报(自然科学版);2014年01期
6 徐雷;戴振宏;王森;刘兵;孙玉明;王伟田;;氟化硼碳平面的第一性原理研究[J];物理学报;2014年10期
7 熊志华,王建敏,雷敏生;用第一性原理研究金属铜的电子结构[J];江西科学;2005年03期
8 李青坤;王彪;王强;王锐;;碳掺杂二氧化钛光催化性能的第一性原理研究[J];黑龙江大学自然科学学报;2007年04期
9 陶辉锦;陈伟民;王赫男;;镍晶格稳定性的第一性原理研究[J];材料导报;2009年18期
10 高巍;巩水利;朱嘉琦;马国佳;;掺氮四面体非晶碳的第一性原理研究[J];物理学报;2011年02期
相关会议论文 前10条
1 姜晓庶;Walter R.L.Lambrecht;;半导体非线性光学材料的第一性原理研究[A];第六届中国功能材料及其应用学术会议论文集(1)[C];2007年
2 郑晓;陈冠华;;开放电子体系的第一性原理方法[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年
3 宋庆功;褚勇;王艳波;耿德平;郭艳蕊;;有序α-(Al_(1/4)Cr_(3/4))_2O_3的结构及其稳定性研究[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
4 孙学勤;周树兰;林娜;李良;张玉芬;赵显;;关于金刚石的硬度的第一性原理研究[A];中国化学会第九届全国量子化学学术会议暨庆祝徐光宪教授从教六十年论文摘要集[C];2005年
5 周安;舒翠翠;刘立胜;翟鹏程;;双填充方钴矿电子结构和电传输性能的第一性原理研究[A];2011中国材料研讨会论文摘要集[C];2011年
6 曾凡林;孙毅;;PVDF单链拉伸的第一性原理模拟[A];第七届海峡两岸工程力学研讨会论文摘要集[C];2011年
7 潘红亮;王月花;;铁酸铋光学特性的第一性原理研究[A];《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会论文摘要集[C];2007年
8 宋庆功;王延峰;康建海;严慧羽;;第一性原理方法在插层化合物Li_xTiS_2结构与性能研究中的应用[A];中国数学力学物理学高新技术交叉研究学会第十二届学术年会论文集[C];2008年
9 刘红;邓莉;刘雷;杜建国;;MgSiO_3熔体高温高压状态方程的第一性原理分子动力学研究[A];中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C];2013年
10 平飞林;蒋刚;张林;朱正和;;~3He对LaNi_5储氚性能影响的第一性原理研究[A];第八届全国核靶技术学术交流会论文摘要集[C];2004年
相关博士学位论文 前10条
1 孙金平;水溶液环境羟基磷灰石/钛界面结构与性质第一性原理研究[D];哈尔滨工业大学;2014年
2 龚奎;新型二维半导体材料及自旋相关器件量子输运的第一性原理研究[D];北京科技大学;2016年
3 崔琳;Si-C-N三元系中新型亚稳相的第一性原理研究[D];燕山大学;2015年
4 孙瑜;若干半导体非晶化相变的结构及化学键演化规律的第一性原理研究[D];吉林大学;2016年
5 李晨辉;纳米线,纳米岛和薄膜生长机理的第一性原理研究[D];郑州大学;2016年
6 李国豹;三种二次电池正极材料的第一性原理研究[D];大连理工大学;2016年
7 姚路驰;半导体纳米线成核生长机理的第一性原理研究[D];中国科学院研究生院(上海技术物理研究所);2016年
8 容青艳;掺杂改善BiFeO_3磁性的第一性原理研究[D];湖南大学;2016年
9 宁锋;基于InAs纳米体系的电子结构和输运特性第一性原理研究[D];湖南大学;2015年
10 张小乐;基于第一性原理的深紫外氟化物晶体及复杂氧化物的理论研究[D];上海交通大学;2015年
相关硕士学位论文 前10条
1 尹梦园;掺杂CoO与铁磁体/MoS_2界面的电子结构和磁性的第一性原理研究[D];天津理工大学;2015年
2 牛之慧;单相多铁性体CaMn_7O_(12)的第一性原理研究[D];昆明理工大学;2015年
3 金元俊;压力下122系铁基超导体的第一性原理研究[D];华南理工大学;2015年
4 李少媛;不同泛函下的MPc/Au(111)吸附体系的第一性原理研究[D];南开大学;2015年
5 柴丰涛;Fe_2(MoO_4)_3的负膨胀行为及嵌Li/Na电化学过程的第一性原理研究[D];浙江理工大学;2016年
6 于刘洋;CuInS_2和CuIn_(1-x)Ga_xS_2光电材料的制备及其能带计算[D];山东建筑大学;2016年
7 高强;若干自旋电子学材料性质第一性原理研究[D];兰州大学;2016年
8 阮兴祥;In掺杂GaN纳米材料光电特性的理论研究[D];延安大学;2015年
9 蒋先云;Cu、Y和Ce掺杂改进CdS光学性质第一性原理研究[D];鲁东大学;2016年
10 孙桂鹏;掺杂及空位缺陷对SnO_2和TiO_2光电性能的影响[D];鲁东大学;2016年
,本文编号:2389246
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2389246.html