双层纳米板结构的非线性动力学特性分析
[Abstract]:Since the discovery and successful preparation of carbon nanotubes, the rapid development of nano-science and technology has become an important field of scientific research in the present day, and a large number of experts and scholars have conducted extensive and in-depth research. Due to the excellent chemical, electrical and mechanical properties of the nano-materials and the structure, it is widely used in the micro-nano-motor system (MEMS/ NEMS), the biosensor, the atomic force microscope and the field filter. The design and manufacture of these components depend on the study of the mechanical properties of the nano-structure, so the research on the mechanical properties of the nano-structure is of great significance. Based on the non-local plate theory, the nonlinear free vibration and the main resonance properties of the two-layer nano-plate structure under different boundary conditions are studied, and the expressions of the nonlinear vibration frequency and the amplitude-frequency response relation of the structure are obtained. The homoclinic and hybrid dynamics of the structure are studied by the global perturbation method. The main research work is as follows: the nonlinear bending vibration characteristics of the double-layer nano-plate structure are studied. considering the geometric large deformation of the structure in the vibration, the nonlinear dynamic equation of the structure is established by using the nonlinear strain displacement relation, and the main common amplitude frequency response relation of the structure is analyzed by using the multi-scale method under the dynamic boundary conditions of the simple branch and the solid support, The influence of the non-local effect and the structure parameters on the amplitude-frequency response curve and the nonlinear vibration frequency is discussed, and the vibration form of the inner resonance is not found in the double-layer nano-plate structure. The non-linear vibration characteristics of the two-layer nano-plate structure embedded in the elastic foundation are studied, and the frequency characteristics of the nonlinear free vibration of the structure under the four boundary conditions are compared. Considering the elastic medium environment at the structure, the influence of the stiffness coefficient of the elastic foundation on the nonlinear main-amplitude-frequency response curve and the free-vibration frequency of the structure is discussed. The relationship between the aspect ratio of the nano-plate and the structure-order and the second-order non-linear vibration frequency ratio is discussed. In this paper, the behavior of the co-sink and mixed kinetics of the two-layer plate structure with buckling under the effect of internal load is studied. The double-layer nano-structure experiences synchronous buckling and asynchronous buckling under the action of the internal load, and under the two different buckling conditions, the improved high-dimensional Melnikov method is used to study the homoclinic and hybrid motion of the structure, and the judging conditions of the existence of the cross-section and the sink track are established. Under the condition of asynchronous buckling, the parameters of the structure's different mixed motion and the super-mixed motion are divided, and the Lyapunov exponent and the Lyapunov dimension of the structural vibration in these parameters are calculated. The influence of the non-local parameters, i.e. the small-scale effect on the structure and the sink and the hybrid motion, is discussed in the two buckling conditions. In this paper, the homoclinic motion of the two-layer nano-plate structure excited by the static load in the plane and the transverse simple harmonic excitation is studied. The nonlinear dynamic equation of the structure is established by using the double-mode Galerkin truncation method, and the rotational inertia of the structure is found in the modeling process, so that the Hamiltonian symmetries of the unperturbed vibration system can be destroyed, and according to the literature of Reddy and Amabili, The effect of the moment of inertia can be neglected in the subsequent nonlinear dynamics analysis. In this paper, the homoclinic phenomenon of the structure in four kinds of buckling is discussed with the improved high-dimensional and sink Melnikov method, and the analytical judgment condition of the structure on the plane of different phases is given, and the effect of the small-scale effect and the boundary condition on the structure and the sink movement is also analyzed. In this paper, the homoclinic phenomenon and the mixed motion of the double-mode buckling double-layer nano-plate structure under the excitation of the parameters are studied. under the condition of synchronous and asynchronous buckling of the first and second order modes of the structure, the homoclinic and the mixed motion of the structure are analyzed in the eight-dimensional phase space by using the generalized melnikov method, The results of the analysis and the Lyapunov exponent and the published literature are compared with the results of the molecular dynamics method, and the influence of the factors such as the small-size effect on the nonlinear dynamic behavior of the structure and the sink is analyzed.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O327
【相似文献】
相关期刊论文 前10条
1 陈式刚;一维映象和混沌运动[J];自然杂志;1983年09期
2 王光瑞,刘伍明,杨匡宋,王继国;一维映象的分歧与混沌运动[J];红河学院学报;1988年02期
3 李丰果,林木欣;用计算机演示混沌运动[J];大学物理;1999年02期
4 邹光胜,金基铎,张宇飞;两端固支输流管的稳定性和混沌运动分析[J];沈阳航空工业学院学报;2000年03期
5 包日东;毕文军;闻邦椿;;两端固定输流管道混沌运动预测[J];振动与冲击;2008年06期
6 闫庆华;韩保红;王民全;程兆刚;陶辰立;;基于神经网络模型预测控制的混沌运动的研究[J];中国制造业信息化;2010年15期
7 赵跃宇;约束对系统运动特性的影响[J];湘潭大学自然科学学报;1989年04期
8 王光瑞;任光耀;;圆映象中混沌运动的测度[J];新疆大学学报(自然科学版);1989年01期
9 王多,陈立群;呈现混沌运动的一个实验装置[J];力学与实践;1993年02期
10 张辉,吴淇泰;混沌运动的控制[J];力学进展;1995年03期
相关会议论文 前10条
1 曹东兴;张伟;范金红;;悬臂梁倍周期分叉和混沌运动的实验研究[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文摘要集[C];2007年
2 姚国;李凤明;;亚音速下大挠度板的混沌运动及其控制[A];第九届全国动力学与控制学术会议会议手册[C];2012年
3 姚国;;亚音速下二维大挠度薄板的混沌运动[A];第九届全国动力学与控制学术会议会议手册[C];2012年
4 曹东兴;张伟;范金红;;悬臂梁倍周期分叉和混沌运动的实验研究[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文集[C];2007年
5 郝育新;张伟;赵秋玲;;复合边界条件下功能梯度板1:1内共振的周期与混沌运动[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
6 刘丽丽;金栋平;胡海岩;;状态保持阶段绳系卫星的混沌运动[A];第十一届全国非线性振动学术会议暨第八届全国非线性动力学和运动稳定性学术会议论文摘要集[C];2007年
7 陈玲莉;梁欧;王丁旺;黎红岗;;改进遗传神经网络控制混沌运动的研究[A];第八届全国动力学与控制学术会议论文集[C];2008年
8 罗晓曙;;随机噪声作用下电力系统动力学行为研究[A];第六届全国网络科学论坛暨第二届全国混沌应用研讨会论文集[C];2010年
9 郭翔鹰;张伟;陈丽华;;外激励作用下复合材料层合板的混沌运动[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年
10 周良强;陈芳启;陈予恕;;一类新四维二次系统的混沌运动[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
相关博士学位论文 前4条
1 王宇;双层纳米板结构的非线性动力学特性分析[D];哈尔滨工业大学;2016年
2 姜宗福;半导体中场畴混沌运动的理论模型[D];北京师范大学;1991年
3 杨阳;板壳的磁弹性与流体弹性问题的混沌运动分析[D];燕山大学;2010年
4 高学军;铁道客车系统横向运动对称/不对称分岔行为与混沌研究[D];西南交通大学;2010年
相关硕士学位论文 前10条
1 钟瑞;电力系统的混沌运动分析及控制方法研究[D];东北大学;2014年
2 唐德霖;永磁无刷直流电机驱动的含间隙机构的混沌运动研究[D];西南交通大学;2015年
3 刘丽静;电磁场中杆和板的分岔和混沌运动[D];燕山大学;2008年
4 金华;单粒子在非轴对称八极形变Y_(32)+Y_(3-2)势场中的混沌运动[D];上海师范大学;2005年
5 苟鹏东;载流矩形薄板的磁弹性分岔和混沌运动的模态分析[D];燕山大学;2010年
6 高琴;一类随机非线性动力系统的混沌运动研究[D];天津工业大学;2006年
7 侯磊;输电线路导线两自由度舞动的分岔与混沌运动研究[D];哈尔滨工业大学;2011年
8 陈文钦;激光脉冲作用下Paul阱中单离子的规则与混沌运动[D];湖南师范大学;2007年
9 任必春;变参数欠驱动平面五杆机构混沌运动的研究[D];西南交通大学;2014年
10 徐艳敏;电磁场中板的稳定性分岔[D];燕山大学;2008年
,本文编号:2420031
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2420031.html