一类流体力学方程组的初值问题的爆破与非存在性
[Abstract]:In this paper, we study the blow-up of the classical solution of the initial value problem of the Euler-Poisson equations with electric field and the nonexistence of the initial value problem of the compressible Navier-Stokes equations in the Sobolev space, which contains two parts. In the first part, we consider the initial value problem of complete Euler-Poisson equations with electric field and Euler-Poisson equations with equal entropy. We prove that the classical solution of the initial value problem will burst in finite time if the initial value satisfies certain conditions. Because the Euler-Poisson equations are derived from the coupling of the Euler equations with the gravity field or electric field, the gravity field or electric field is a nonlocal term, which destroys the finite propagation of the compact support set of the density. This makes Sideris [39] prove that the method of blow-up of Euler equations is invalid when dealing with the blow-up of Euler-Poisson equations. Sideris's method contains two key elements, one is the finite propagation of compact support set of density, The other is the estimation of the radial component of momentum. The estimation of radial component of momentum can be replaced by the upper bound estimation of internal energy. Therefore, we need to find a new element to replace the finite propagation of compact set of density. For this problem, we need to overcome two difficulties, one is to estimate the nonlocal term derived from the electric field, and the other is how to prove the explosion when the density does not have a compact support set. The two difficulties are combined. Our approach is to use the Hardy-Littlewood-Sobolev inequality to deal with the nonlocal term derived from the electric field and then to estimate the upper bound of the internal energy, and to use the Chemin inequality to give the lower bound estimate of the internal energy. Finally, by comparing the coefficients of the upper and lower bounds of the internal energy, it is determined that the smooth solution of the initial value problem of the Euler-Poisson equations with electric field will burst in a finite time under certain conditions. In the second part, the nonexistence of the initial value problem for the complete Navier-Stokes equations with compressible arbitrary dimension and the one-dimensional isentropic Navier-Stokes equations in Sobolev space is studied. Xin Zhouping [45], Cho and Jin [61] prove that if the initial density has compact support, The solution of the initial value problem for the complete Navier-Stokes equations with compressible arbitrary dimension and the one-dimensional isentropic Navier-Stokes equations will burst in a certain Sobolev space. Our work proves that under the condition that the initial density has compact support set, The complete Navier-Stokes equations with compressible arbitrary dimension with heat exchange have no solution in this kind of Sobolev space and the one-dimensional isentropic Navier-Stokes equations have no solution in this kind of Sobolev space under the condition that the initial value satisfies certain conditions. Our approach is to first turn the initial value problem into an initial-boundary value problem for an overdetermined system of integro-differential equations on a bounded domain. Then a proper parabolic or integro-differential operator degenerate along the time derivative is defined and the corresponding Hopf Lemma and strong extremum principle are established.
【学位授予单位】:清华大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O175.8
【相似文献】
相关期刊论文 前10条
1 沈彩霞;一类广义Davey-Stewartson方程关于初值问题的解[J];河北大学学报(自然科学版);2002年01期
2 郭柏灵;一类高阶多维非线性Schr銉dinger方程组的初值问题和周期初值问题[J];科学通报;1982年06期
3 郑兴礼;一类退化方程的初值问题[J];科学通报;1982年24期
4 唐璐茜;一类非齐次退化方程的初值问题[J];华东交通大学学报;1991年01期
5 连琏,郭春辉;三维空间水下缆索性状计算初值问题的解[J];海洋工程;1992年02期
6 除才生;拟线性抛物型方程组初值问题的整体解[J];河海大学学报;1994年04期
7 罗党;具强迫项P系统的初值问题[J];天中学刊(驻马店师专学报);1997年05期
8 汤永龙;大脑中药物扩散模型的初值问题及参数估计[J];益阳师专学报;2001年03期
9 王艳萍;;一类非线性双曲型方程的初值问题[J];工程数学学报;2009年01期
10 刘铁锁;;一阶线性微分方程初值问题解公式应用及例题分析[J];科学技术与工程;2011年17期
相关会议论文 前4条
1 张素英;;动力学微分方程初值问题的一个新解法[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 王磊;郭嗣琮;;一阶线性模糊微分方程组的模糊初值问题[A];中国运筹学会模糊信息与模糊工程分会第五届学术年会论文集[C];2010年
3 张娜;;基于三次Lagrange插值多项式的分数阶常微分方程初值问题的预校算法[A];中国力学大会——2013论文摘要集[C];2013年
4 王晓东;曹庆杰;陈予恕;;干摩擦作用下双边约束SD振子的初值问题[A];第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集[C];2011年
相关博士学位论文 前6条
1 陈停停;等熵Euler方程组Chaplygin气体模型初值问题弱解存在性的研究[D];中国科学院大学(中国科学院武汉物理与数学研究所);2017年
2 王跃循;一类流体力学方程组的初值问题的爆破与非存在性[D];清华大学;2016年
3 李吉娜;对称约化在非线性演化方程的初值问题和群分类中的应用[D];西北大学;2011年
4 孙文华;非线性双曲守恒律方程组的初值问题[D];上海大学;2007年
5 孙梅娜;最简Chapman-Jouguet燃烧模型的两类典型初值问题[D];上海大学;2007年
6 黄娟;能量临界情形的非线性Schr(?)dinger方程[D];四川师范大学;2010年
相关硕士学位论文 前10条
1 刘建丽;时间分数阶扩散方程反初值问题[D];兰州大学;2016年
2 高晓红;一类五阶Korteweg-de-Vries方程Cauchy问题解的惟一连续性[D];西北大学;2016年
3 钟明n,
本文编号:2425147
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2425147.html