自适应光学测试与系统优化研究
[Abstract]:Adaptive Optics (AO) is a technique for real-time detection and compensation of pre-wave distortion. It is widely used in the fields of astronomical imaging, laser beam control, free space laser communication, retinal imaging, microimaging, and space optics. Although the adaptive optics have made great success in many fields, the adaptive optics still have a further improvement in the control method, the non-co-optical path aberration correction, and the like. The research of self-adaptive optics test and system optimization is of great significance for measuring, analyzing and improving the performance of the adaptive optical system. The self-adaptive optical test and system optimization cover a lot of content. In this paper, the method of pre-processor test method, self-adaptive optical system performance test method, and the method of correcting non-co-optical path aberration using the pre-wave processor are selected based on the actual demand in the engineering application. The following research work is carried out: 1. The composition of the adaptive optics and the adaptive optics system is introduced, and the self-adaptive optics reconstruction algorithm is summarized and analyzed. A fast algorithm of Zernike polynomial based on discrete Fourier transform is derived and a fast algorithm of Zernike polynomial based on discrete Fourier transform is derived and a fast algorithm of Zernike polynomial based on discrete Fourier transform is derived. In order to solve the problem of difficult debugging, a scheme is designed and implemented to realize the pre-wave processor test by using the upper computer software. The method can test the middle calculation result of the wave front processor in step, and can avoid the damage to the precision wave front corrector due to improper output in the hardware debugging. First, the function, composition and workflow of the pre-wave processor are analyzed, and the test procedure of the pre-wave processor is determined. then, the working mode of the pre-wave processor is tested by judging the uploading data of the pre-wave processor, the system parameter is set correctly, the pre-wave slope calculation process of the pre-wave processor is tested by comparing the software calculation value and the pre-wave processor upload value, The pre-wave reconstruction process and the pre-wave control process. Finally, the test method is applied to the test of the 97-unit adaptive optical pre-processor, and the result shows that the hardware debugging efficiency of the pre-wave processor is greatly improved. after the pre-tested wave front processor can work normally in the self-adaptive optical experimental system, the rms and pv of the residual wave front aberration of the system after continuous correction are respectively 0.034 wavelength and 0.392 wavelength. A non-co-optical path aberration correction method suitable for a pre-wave processor is proposed. First, the cause of the non-co-optical path aberration and the method of using the phase difference technique to detect the aberration of the non-co-optical path are discussed. Then, according to the working flow of the wave front processor, the algorithm of converting the non-co-optical path image difference to the reference point offset of the shack-hartmann wave front detector (sh-wfs) is derived, and a main control computer software module for implementing the algorithm is developed. in that end, the experiment is carried out using the light source in the optical path of the telescope, and after the aberration correction of the non-co-optical path is carried out by adopting the method, the target energy concentration degree is increased by 1.7%, the feasibility of the method is proved, and 4, in order to meet the requirement of the performance test of the adaptive optical system, In this paper, the image of the corrected white-light-fiber light source is used to calculate the flow ratio (sr) and the sr is used as the evaluation index of the performance test, and a method for performing the performance test on the self-adaptive optical system in a laboratory is designed and implemented. the method adopts an optical transfer function integration method to calculate the sr, so that the problem that the measurement target is not consistent with the ideal target energy in the sr calculation formula is avoided; in order to simulate the actual factors which influence the correction effect of the adaptive optical system, According to the method, different sh-wfs image signal-to-noise ratios can be simulated by changing the brightness of the light source, and the length and the greenwood frequency of different fried air are simulated by changing the position and the rotation speed of the turbulence simulator respectively. Finally, the performance test method designed in this paper is used in the performance test of the 97-unit self-adaptive optical experimental system. the performance test results show that for medium sh-wfs image signal-to-noise ratio, the self-adaptive optical experimental system can better carry out the closed-loop correction under the condition that the length of the fried atmosphere is more than 5cm and the greenwood frequency is lower than 60hz. The stability of the closed-loop control of the region reconstruction method is inferior to that of the mode reconstruction method, and the stability evaluation and improvement are studied by using the lyapunov stability theory. The error propagation factor based on the lyapunov stability theory can cover the effect of the integral gain and the response matrix on the stability. Therefore, the error propagation factor is used as the evaluation criterion of closed-loop control stability. and the corresponding relation between the sh-wfs sub-aperture and the deformation mirror actuator is determined by using the soutwell corresponding method to avoid the waffle mode which can be caused by the fried corresponding method and improve the stability. At the same time, the singular value filtering method of the response matrix is adopted to improve the stability, and the influence of the singular value filtering on the stability of the response matrix by the error propagation factor is proposed. By calculating the error propagation factor, the effect of different integral gain and the different number of singular values of the response matrix on the stability of closed-loop control is analyzed. The results of the analysis show that the singular value filtering of the response matrix can improve the stability of closed-loop control, and the analysis results show that the stability can be maintained by appropriately filtering the singular values of some of the response matrices when the integral gain is high. Finally, the system performance after 13 minimum singular values of the response matrix is measured by the experiment, and the measurement results show that the pre-wave correction capability of the adaptive optical system can still be better, and the small part singular value of the filter response matrix is not affected by the system performance.
【学位授予单位】:中国科学院研究生院(长春光学精密机械与物理研究所)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O439
【相似文献】
相关期刊论文 前10条
1 ;自适应光学[J];中国光学与应用光学文摘;2008年02期
2 ;自适应光学[J];中国光学与应用光学文摘;2008年03期
3 ;自适应光学[J];中国光学与应用光学文摘;1994年03期
4 ;自适应光学[J];中国光学与应用光学文摘;1996年01期
5 ;自适应光学[J];中国光学与应用光学文摘;1996年03期
6 姜文汉;自适应光学与能动光学[J];物理;1997年02期
7 ;自适应光学在解决实际问题方面的应用[J];激光与光电子学进展;1997年11期
8 ;自适应光学[J];中国光学与应用光学文摘;1998年04期
9 ;自适应光学[J];中国光学与应用光学文摘;2000年06期
10 熊耀恒,白金明;应用自适应光学望远镜所取得的天文观测成果[J];云南天文台台刊;2000年02期
相关会议论文 前5条
1 薛忠晋;杨敏;朱林泉;;自适应光学应用技术[A];第六届全国信息获取与处理学术会议论文集(2)[C];2008年
2 朱林泉;牛晋川;朱苏磊;;主动光学与自适应光学[A];第六届全国信息获取与处理学术会议论文集(2)[C];2008年
3 王国松;梁永辉;王三宏;毛宏军;胡浩军;;基于DSP的SPGD自适应光学控制平台研究[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年
4 郑文佳;王春鸿;姜文汉;李梅;唐端午;;基于FPGA的自适应光学实时波前斜率处理新方法[A];全国第一届信号处理学术会议暨中国高科技产业化研究会信号处理分会筹备工作委员会第三次工作会议专刊[C];2007年
5 夏雪球;梁永辉;毛宏军;;基于桶中功率测量的随机并行梯度下降白适应光学光束净化实验研究[A];第十四届全国光学测试学术讨论会论文(摘要集)[C];2012年
相关重要报纸文章 前4条
1 本报通讯员 傅雪军 本报记者 朱会伦;祖国自适应光学的骄傲[N];科技日报;2001年
2 本报特约撰稿 黄寰;中国之光 眩亮世界[N];四川科技报;2007年
3 ;连接现实世界与信息世界[N];计算机世界;2001年
4 田京;德启动“大型望远镜自适应光学”研究计划[N];大众科技报;2001年
相关博士学位论文 前8条
1 王亮;自适应光学测试与系统优化研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2016年
2 梁波;自适应光学像差矫正对双眼叠加作用的影响研究[D];中国科学院研究生院(光电技术研究所);2013年
3 李抄;液晶自适应光学眼底成像仪的实用化研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2011年
4 王志斌;自适应光学荧光闭环技术在共聚焦成像中的应用[D];中国科学院研究生院(光电技术研究所);2015年
5 侯静;自适应光学波前探测新概念研究[D];中国人民解放军国防科学技术大学;2002年
6 王三宏;随机并行梯度下降自适应光学技术在光束净化中的应用[D];国防科学技术大学;2009年
7 陈颖;自适应光学仿真系统关键技术研究[D];电子科技大学;2013年
8 付强;天文望远镜大气湍流下优化控制技术研究[D];中国科学院研究生院(光电技术研究所);2014年
相关硕士学位论文 前10条
1 王小妮;自适应光学与在无线激光通信中的应用[D];中北大学;2008年
2 刘广杰;微型自适应光学仪器的研究与设计[D];昆明理工大学;2014年
3 张利;基于自适应光学的水下成像技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2010年
4 周晗;基于GPU的自适应光学性能测算系统研究[D];中国科学院研究生院(光电技术研究所);2014年
5 王国松;基于DSP的随机并行梯度下降自适应光学控制平台研究[D];国防科学技术大学;2010年
6 张超;基于FPGA的SPGD自适应光学控制平台研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
7 王保峰;基于自适应光学的激光精跟踪技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2014年
8 胡谋法;自适应光学波前重构算法研究[D];国防科学技术大学;2003年
9 陆凤华;自适应光学校正仿真中可视化数据交互的设计与实现[D];电子科技大学;2011年
10 戴坤健;OAM光束传输特性及自适应光学波前畸变校正技术研究[D];北京理工大学;2015年
,本文编号:2428837
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2428837.html