密码函数的密码学性质分析及构造
[Abstract]:Cryptographic function is an important part of many cryptographic systems. In order to make the designed cryptosystem resist all kinds of existing attacks, the cryptosystem must satisfy some corresponding cryptographic properties, such as balance, correlation immunity, elasticity, high algebraic times, and high nonlinearity, and the cryptology function chosen by the system must satisfy some corresponding cryptographic properties, such as balance, correlation immunity, elasticity, high algebraic times, and high nonlinearity. High algebraic immunity, low differential uniformity, etc. Therefore, the research and construction of cryptographic functions with excellent cryptographic properties are of great significance both in theory and in practice. This paper mainly studies the analysis and construction of several key cryptology properties of cryptographic function, and obtains the following research results: aiming at the three key cryptology security indexes: nonlinearity, algebraic immunity and differential uniformity, In this paper, a new characterization of the optimal algebraic immune equilibrium Boolean function is given by using the Schur function, an important tool in combinatorial mathematics. In this paper, a new proof that Carlet-Feng function is an optimal algebraic immune function is given. At the same time, three kinds of optimal algebraic immune Boolean functions are constructed. It is found that there are some examples of other excellent cryptographic properties, such as high nonlinearity, high algebraic times, and so on, among the three classes of functions constructed in this paper. Secondly, a class of 4-difference permutations is obtained by dividing the defined domain of a function into two subsets and defining different permutations on the two subsets. The cryptology properties such as algebraic number, nonlinearity and so on are studied. The CCZ inequality of this class of functions with 12 kinds of 4-difference permutations is also discussed. Finally, five classes of quadratic Semi-bent functions and two classes of Plateaued functions are constructed and compared with the known constructions. In this paper, the important cryptographic properties of Budaghyan-Carlet polynomials and Dembowski- Ostrom-type functions are also analyzed. The properties and number of elements in a set related to Budaghyan-Carlet polynomials are discussed. By studying the component functions of Budaghyan-Carlet polynomials, we obtain a class of Bent functions and answer the question whether Budaghyan-Carelt polynomials can be permutation polynomials by adding linearized polynomials. In addition, it is proved that if Dembowski- Ostrom type multi-output Boolean function has unique zero root and its derivative function has one or four roots, then the Boolean function has classical Walsh spectrum, and its Walsh spectrum distribution can be clearly given. The Walsh spectral distributions of four types of Dembowski- Ostrom-type APN functions are obtained.
【学位授予单位】:湖北大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN918.1;O174
【相似文献】
相关期刊论文 前4条
1 冀秀春;;一类具有较好自相关性质的密码函数[J];湖北大学学报(自然科学版);2009年01期
2 任朝荣;肖国镇;;关于流密码函数计数问题的一个注记[J];西安电子科技大学学报;1993年04期
3 黄昆;李超;屈龙江;;基于先验结果对涂-邓猜想一些情形下的递推证明[J];武汉大学学报(理学版);2012年06期
4 ;[J];;年期
相关博士学位论文 前5条
1 谢涛;密码函数的密码学性质分析及构造[D];湖北大学;2016年
2 张卫国;密码函数及其构造[D];西安电子科技大学;2006年
3 毛明;分组迭代密码函数的安全性研究[D];电子科技大学;2012年
4 孟强;密码函数中若干问题的研究[D];南开大学;2010年
5 李平;密码函数的线性性指标及其应用[D];国防科学技术大学;2010年
相关硕士学位论文 前10条
1 张彦文;基于密码函数库的加解密过程分析技术研究[D];解放军信息工程大学;2014年
2 陈东;具有良好自相关性质的高非线性平衡密码函数的构造[D];西安电子科技大学;2015年
3 韦永壮;密码函数的安全性分析[D];西安电子科技大学;2004年
4 肖理;一些密码函数的构造与性质分析[D];解放军信息工程大学;2013年
5 张凤荣;一类密码函数的构造及其研究[D];西安电子科技大学;2009年
6 单进勇;非线性密码函数的构造和在编码学中的应用[D];湖北大学;2012年
7 李娟;Plateaued函数及其构造[D];西安电子科技大学;2009年
8 郭颖明;一些性质优良的密码函数的若干问题研究[D];解放军信息工程大学;2013年
9 杨谱;分组迭代密码函数的扩散层分析及应用[D];西安电子科技大学;2013年
10 孙晓锐;密码函数的理论和分析[D];上海交通大学;2011年
,本文编号:2472067
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2472067.html