通过飞秒激光控制结构均匀性、周期性和几何形状:起源与应用

发布时间:2021-02-03 11:26
  纳米级尺寸周期性表面结构对于控制光的传播以及光与物质的相互作用非常重要,其在太阳能转换、光子学、生物医学领域具有广阔的应用前景。然而周期性纳米结构的制造需要复杂且昂贵的纳米制造工具,限制了这些结构在实际应用中的大规模集成制造。相比较而言,飞秒激光加工在不需要使用掩模的基础上,可以有效地改变材料的光学、电、机械和摩擦学特性,并在生物医学、环境和能源领域具有潜在的应用。飞秒激光加工可以通过引入随机表面结构,或者规则和周期性的表面结构,来更改样品表面的材料特性,可在多种材料上制造具有亚波长周期性的一维飞秒激光诱导周期性表面结构。然而,飞秒激光诱导条纹结构在实际应用中的扩展具有三大挑战,尤其是在纳米光子学中,其分别为;1.缺乏长距离的空间均匀性;2.难以产生亚波长周期性表面结构,即高空间频率条纹结构;3.难以获得复杂的二维几何形状。首先,由于纳米级结构可随机激发表面等离激元而形成条纹结构,因此最终的条纹结构通常扭曲成许多曲线,从而失去了远距离均匀性。其次,高空间频率条纹结构的起源来自于被照射材料的自组织理论,这与表面刻蚀和原子扩散效应导致的表面不稳定性有关,因此,高空间频率条纹结构的周期性和均... 

【文章来源】:中国科学院大学(中国科学院长春光学精密机械与物理研究所)吉林省

【文章页数】:185 页

【学位级别】:博士

【文章目录】:
Acknowledgements
摘要
Abstract of Dissertation
List of Acronyms
Chapter 1
    1.1 Background of direct fs-laser nano/microstructuring
    1.2 Optical properties of metals: the Drude model
    1.3 Light absorption in metals and the Two Temperature Model
    1.4 Surface plasmon polaritons for fs-LIPSSs formation
        1.4.1 Surface plasmon-polaritons
        1.4.2 Localized surface plasmons for light absorption in metals
        1.4.3 Excitations of surface plasmons polaritons
        1.4.4 Excitation of SPPs with gratings
        1.4.5 Excitation of SPPs via surface roughness or scattering
    1.5 Laser-Induced periodic surface structures
        1.5.1 Classical LIPSSs
        1.5.2 Low-spatial frequency or near subwavelength fs-LIPSSs
        1.5.3 High-Spatial frequency fs-LIPSSs
        1.5.4 Methods of fabricating uniform 1D fs-LIPSSs structures
        1.5.5 Origin of high-spatial uniformity of fs-LIPSSs from delayed double/triple pulses
        1.5.6 Two-dimensional surface structures using double or triple pulse laser irradiation
        1.5.7 Origin of 2D fs-LIPSSs structures using triple pulse laser irradiation
        1.5.8 Formation of various controlled micro/nanostructures
    1.6 Applications of fs-laser treated surfaces
        1.6.1 Flat, conical and nano/microstructures for antibacterial properties
        1.6.2 Light absorbers/emitters
        1.6.3 Selective solar absorbers for enhanced thermoelectric generation
        1.6.4 Radiative cooling
        1.6.5 Radiative and convective cooling for enhanced thermoelectric generation
    1.7 Femtosecond laser-textured high-temperature solar absorbers
    1.8 Overview of the thesis
Chapter 2
    2. Formation of uniform one-dimensional subwavelength fs-LIPSSs structures
        2.1 Overview
        2.2 Experimental setup
        2.3 Formation of 1D fs-LIPSSs with single pulse irradiation
        2.4 Maskless formation of uniform 1D subwavelength periodic surface structures by fs-double pulse laser irradiation
            2.4.1 Quantitative analysis of grating splitting
            2.4.2 Controlling the orientation of fs-LIPSSs by changing the polarization
        2.5 Discussion
            2.5.1 Origin of the high-uniformity of fs-LIPSSs
            2.5.2 Origin of grating-splitting
        2.6 Summary
Chapter 3
    3. Formation of HSFL and complex 2D surface structures using temporally delayed double and triple fs-pulse laser irradiation
        3.1 Overview
        3.2 Formation of controllable 2D periodic surface structures on cobalt by femtoseconddouble pulse laser irradiation
            3.2.1 Experimental setup
            3.2.2 Formation of single pulsed fs-LIPSSs on cobalt
        3.3 Formation of 1D and 2D structures by train of double pulses with cross-polarization
            3.3.1 Controlling the geometry of 2D surface structures by laser fluence of double pulseirradiation
            3.3.2 Formation of 1D HSFL structures on cobalt by controlling the time-delay
        3.4 Discussion
            3.4.1 Physical mechanism for 2D structures and HSFL formation
        3.5 Large-scale formation of uniform two-dimensional subwavelength structures on Nickel by delayed Triple femtosecond laser pulse irradiation
            3.5.1 Introduction
            3.5.2 Experimental setup
        3.6 Results and discussion
            3.6.1 Formation of 1D fs-LIPSSs on Ni using train of single-pulsed femtosecond laser beam
            3.6.2 Formation of 1D nanowires using train of triple pulsed femtosecond laser beam
            3.6.3 Comparison of 2D structures formed using train of double and triple pulsedfemtosecond laser beam
        3.7 Effect of time-delay on the evolution of surface structures using train of triple pulsedbeam
            3.7.1 Formation mechanism of vertical and horizontal grooves
            3.7.2 Variation of vertical and horizontal periodicity as a function of time-delay
        3.8 Physical mechanism of period dependence on time-delay
        3.9 Summary
Chapter 4
    4. Femtosecond laser-induced micro/nanostructuring for biomedical applications
        4.1 Overview
        4.2 Femtosecond laser-induced micro/nanostructuring of gold under spot irradiation
            4.2.1 Experimental setup
            4.2.2 Formation of fs-LIPSSs under normal and 45-degree incidence
            4.2.3 Micro and nanostructures under fixed spot and scanning irradiation
            4.2.4 Creation of hexagonal patterned structures
            4.2.5 Conic structures
        4.3 Optimal window condition of various surface structures
        4.4 Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laserpulse in scanning mode
            4.4.1 Overview of bacterial and bactericidal surfaces
        4.5 Experimental details
            4.5.1 Sample fabrication
            4.5.2 Contact angle measurements
            4.5.3 Bacterial adhesion test
            4.5.4 SEM analysis
            4.5.5 Bacterial quantification
        4.6 Formation of superhydrophobic and antibacterial surfaces by fs-laser irradiation
            4.6.1 Physical Mechanism of LSFL
        4.7 The impact of structural features/dimension on bacterial adhesion
        4.8 Summary
Chapter 5
    5 Applications of fs-laser treated surfaces for enhanced thermoelectric generation
        5.1 Spectral absorption control of femtosecond laser-treated metals and application insolar-thermal devices
        5.2 Numerical analyses of hybridized metallic surface nanostructures
        5.3 Experimental setup
            5.3.1 Laser-induced surface structuring
            5.3.2 Simulations
            5.3.4 Determination of particles’ radii from SEM images
            5.3.5 Physical vapor deposition of Ti O2
            5.3.6 Annealing
            5.3.7 Spectral and surface characterization
" <="" sub="">>            5.3.8 TEG Measurements</li>
        5.4 Creation of selective and broad band light absorbers with fs-laser ablation
        5.5 High-temperature operation of fs-laser treated SSA
        5.6 Solar thermoelectric generation using fs-laser treated W
        5.7 Increasing radiative and convective cooling capacity of Aluminum heat exchanger byfemtosecond laser treatment for thermoelectric heat scavengers
        5.8 Experimental section
            5.8.1 Sample preparation
            5.8.2 Fs-Laser structuring
" <="" sub="">>            5.8.3 TEG Measurements</li>
            5.8.4 Surface and optical Characterization
        5.9 Results and Discussion
            5.9.1 Creation of fs-light absorbers on Al
            5.9.2 Effect of variation in spectral emissivity on TEG output power
            5.9.3 Effect of variation in surface area on TEG output power
        5.10 Summary
Chapter 6
    Conclusions and outlook
References
Author’s Resume
List of published and ongoing research works



本文编号:3016423

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/3016423.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1f3f4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com