基于光雕技术的还原氧化石墨烯压力传感器制备

发布时间:2018-01-15 11:23

  本文关键词:基于光雕技术的还原氧化石墨烯压力传感器制备 出处:《太原理工大学》2017年硕士论文 论文类型:学位论文


  更多相关文章: 光雕还原氧化石墨烯 高还原效率 压阻效应 柔性压力传感器 宽压力范围 性能调控


【摘要】:传统的压力传感器都以硅为基础或是金属应变片式,其刚性结构限制了不规则形貌上的压力测试,因此制备一种柔性可用于各种形貌表面压力测试的压力传感器非常必要。石墨烯由于其具备压阻效应并且可随意转移到各种柔性基底上,被广泛的应用于压力传感器的制备,但由于传统石墨烯制备方法以及石墨烯性质的制约,大部分已报道的压力传感器都只在较低范围内具有较高灵敏度,无法满足宽范围的压力检测。因此本论文在前人的工作基础上研究了基于光雕技术的还原氧化石墨烯宽范围压力传感器的制备,光雕技术还原氧化石墨烯相对于传统氧化石墨烯还原技术,所需时间短、设备成本低、操作简便,且便于在柔性基底上大规模集成。并且通过对光雕还原氧化石墨烯产物进行XPS表征证实光雕技术对于氧化石墨烯具有很高的还原效率。光学显微镜与AFM表征结果证明氧化石墨烯经过光雕过程形成了与传统方法制备的石墨烯不同的凸起结构,并且测试发现光雕还原氧化石墨烯具有压阻效应,因此可将光雕还原氧化石墨烯用于压力传感器的制备。从光雕的原理上分析此凸起结构是光雕过程中激光热效应的结果,同时也是产生压阻效应的主要原因。而光雕还原氧化石墨烯结构松软,易被破坏,因此作为压力传感器使用时需要添加一层保护材料,比较胶带/PET/PDMS分别作为保护材料时压力传感器性能的稳定性,发现PDMS最适合作为此压力传感器中还原氧化石墨烯的保护材料,且此压力传感器的可测量压力范围达60 KPa,灵敏度为0.00779 KPa~(-1)。为了使压力传感器能够满足各种条件下的压力测量,需要调控其测量范围与灵敏度,因此设计并制备了不同圈数的螺旋状还原氧石墨烯,测试组装后的压力传感器性能发现螺旋圈数越多,可测量压力范围越低,而灵敏度则随圈数增加而增加,可测量压力范围可高达800 KPa。通过设计不同密度的还原氧化石墨烯图形,寻找到了一种能够简单有效调控压力传感器的测量范围与灵敏度的方法。最后对此压力传感器的循环使用寿命进行测试,证明了其具有300次以上的使用寿命,说明稳定性较高,有望用于实际应用。
[Abstract]:The traditional pressure sensors are based on silicon or metal strain gauge, and their rigid structure limits the pressure measurement on irregular morphology. Therefore, it is necessary to prepare a kind of flexible pressure sensor which can be used to measure the surface pressure of various morphologies. Because of its piezoresistive effect, graphene can be transferred to various flexible substrates at will. It has been widely used in the preparation of pressure sensors, but due to the traditional graphene preparation methods and graphene properties constraints, most of the reported pressure sensors are only in a lower range of high sensitivity. Therefore, based on the previous work, the fabrication of reductive graphene wide range pressure sensor based on photocarving technology is studied in this paper. Compared with the traditional graphene reduction technology, the photocarving technology has the advantages of short time, low equipment cost and simple operation. It is convenient for large-scale integration on flexible substrates, and the XPS characterization of photo-engraving products of graphene oxide shows that photocarving technology has a high reduction efficiency for graphene oxide. Optical microscope and AFM have high reduction efficiency. The characterization results showed that graphene oxide formed a different protruding structure from the traditional graphene prepared by photoengraving. The photoresist effect of graphene oxide was also found. Therefore, it can be used to fabricate the pressure sensor by reducing graphene by light carving. From the principle of light carving, this bulge structure is the result of laser thermal effect in the process of light carving. At the same time, it is also the main reason for the piezoresistive effect. However, the structure of photocarving reduced graphene oxide is soft and easy to be destroyed, so it is necessary to add a layer of protective material when used as a pressure sensor. Comparing the stability of pressure sensor with tape / per / PDMS as protective material, it is found that PDMS is the most suitable protection material for reducing graphene oxide in this pressure sensor. The pressure sensor has a measurable pressure range of 60 KPA and a sensitivity of 0.00779 KPA-1. In order to make the pressure sensor meet the pressure measurement under various conditions. It is necessary to control the measurement range and sensitivity, so we designed and prepared different cycles of reduced oxygraphene. After testing the performance of the assembled pressure sensor, it was found that the more the number of spiral cycles, the lower the measurable pressure range. The sensitivity increases with the increase of the number of cycles, and the pressure range can be measured up to 800 KPA. A simple and effective method to control the measuring range and sensitivity of the pressure sensor is found. Finally, the cycle life of the pressure sensor is tested. It is proved that it has a service life of more than 300 times, indicating that its stability is high and it is expected to be used in practical application.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP212

【参考文献】

相关期刊论文 前6条

1 肖应超;;MEMS传感器发展现状与应用[J];中国高新技术企业;2016年35期

2 钱鑫;苏萌;李风煜;宋延林;;柔性可穿戴电子传感器研究进展[J];化学学报;2016年07期

3 伞海生;宋子军;王翔;赵燕立;余煜玺;;适用于恶劣环境的MEMS压阻式压力传感器[J];光学精密工程;2012年03期

4 胡耀娟;金娟;张卉;吴萍;蔡称心;;石墨烯的制备、功能化及在化学中的应用[J];物理化学学报;2010年08期

5 郭冰;王冲;;压力传感器的现状与发展[J];中国仪器仪表;2009年05期

6 尹福炎;薄膜应变片与传感器[J];传感器世界;1997年06期



本文编号:1428094

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1428094.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户694a4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com