四轴冲压上下料机器人的仿真与轨迹规划研究
本文关键词: 四轴冲压上下料机器人 优化设计 模态分析 轨迹规划 出处:《江苏大学》2017年硕士论文 论文类型:学位论文
【摘要】:随着制造业的高速发展,传统冲压生产线由于用工成本上升、效率低以及安全性差等原因,已经越来越不能满足冲压企业的发展需求。同时,冲压零件也呈现出小批量、多品种的发展趋势。采用机器人组成柔性自动化生产线已成为企业代替传统生产线的首选方式。然而常见的关节式冲压上下料机器人存在价格昂贵、维护困难等问题,不适于中小型冲压企业使用,为此,本课题开发了一种价格适宜、灵活性好、维护方便的冲压上下料机器人,并对其机构设计、零件轻量化、结构优化设计、运动学分析、轨迹规划等关键技术进行了研究。具体研究内容如下:首先,对冲压生产线工艺流程进行分析,确定冲压上下料机器人的设计参数,并以此为基础确定了机器人本体结构与传动机构的设计方案。使用Solidworks构建了四轴冲压上下料机器人的三维模型,并完成了各轴伺服电机的选型计算。同时根据配套压机模具设计了端拾器。其次,针对机器人的机械结构部分。利用Ansys Workbench对关键零部件进行了静强度分析,并在确保零件强度的达标的情况下对零件拓扑优化,来达到轻量化的设计目标。同时对小臂进行了多目标优化,在保证变形条件与强度条件达标的前提下最大程度的降低小臂质量。最后对机器人整体结构在初始位置与极限位置进行了模态分析,根据分析结果得出伺服电机运转时应避开的转速。最后,针对机器人的传动机构部分。先运用D-H法构建了四轴冲压上下料机器人的连杆坐标系,并在此基础上完成了正、逆向运动学求解。再使用ADAMS对实际工况下机器人的上下料动作完成了运动学仿真,取得端拾器的位移、速度以及加速度曲线,从而验证设计的合理性,并利用样机生产实验来验证了理论设计的正确性。最后在关节空间与直角坐标空间对机器人进行了轨迹规划研究。在关节空间对三次多项式插值、五次多项式插值以及“353”多项式插值进行了阐述与仿真,结果验证了在关节空间采用高低次结合的多项式插值优于单一多项式插值。在直角坐标空间对直线插补进行了阐述与仿真,验证了在压力机内部采用直线插补可以保证端拾器的轨迹为直线,从而避免在压力机内部发生碰撞。
[Abstract]:With the rapid development of manufacturing industry, the traditional stamping production line has been more and more unable to meet the needs of stamping enterprises because of the rising cost of employment, low efficiency and poor security. Stamping parts also show small batches. Flexible automatic production line composed of robots has become the first choice for enterprises to replace the traditional production line. However, the common joint stamping loading and unloading robot is expensive. Difficult maintenance is not suitable for small and medium-sized stamping enterprises. Therefore, a kind of stamping loading and unloading robot with suitable price, good flexibility and convenient maintenance has been developed, and its mechanism design, parts lightweight. Structural optimization, kinematics analysis, trajectory planning and other key technologies are studied. The specific research contents are as follows: firstly, the process of stamping production line is analyzed. The design parameters of stamping loading and unloading robot are determined. On the basis of this, the design scheme of the robot body structure and transmission mechanism is determined, and the three-dimensional model of the four-axis stamping loading and unloading robot is constructed by using Solidworks. And completed each axis servo motor type selection calculation. At the same time according to the matching press die design end pick up. Secondly. Aiming at the mechanical structure of the robot, the static strength analysis of the key parts is carried out by using Ansys Workbench, and the topology of the parts is optimized under the condition that the strength of the parts is up to the standard. To achieve the lightweight design goal. At the same time, multi-objective optimization of the forearm is carried out. In order to ensure the deformation and strength conditions to meet the requirements of the maximum reduction of the mass of the forearm. Finally, the overall structure of the robot in the initial position and the limit position of modal analysis. According to the analysis results, the rotation speed should be avoided when the servo motor is running. Finally, aiming at the transmission mechanism of the robot, the connecting rod coordinate system of the four-axis stamping loading and unloading robot is constructed by using D-H method. On this basis, the forward and reverse kinematics solutions are completed. Then, the kinematics simulation of the loading and unloading of the robot under actual working conditions is completed using ADAMS, and the displacement, velocity and acceleration curves of the end pickers are obtained. In order to verify the rationality of the design. Finally, the trajectory planning of robot is studied in the joint space and the rectangular coordinate space, and the cubic polynomial interpolation is done in the joint space. The fifth degree polynomial interpolation and "353" polynomial interpolation are described and simulated. The results show that the polynomial interpolation is better than the single polynomial interpolation in the joint space, and the linear interpolation is described and simulated in the rectangular coordinate space. It is verified that the trajectory of the end collector can be kept straight by linear interpolation inside the press, thus avoiding the collision within the press.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242
【参考文献】
相关期刊论文 前10条
1 赵川;张鹏超;潘晓磊;吕海立;;机器人的运动轨迹插值方法研究与分析[J];制造技术与机床;2016年06期
2 林武;王菲;张艳朋;胡建;;SCARA机器人运动学仿真分析和实际应用[J];电气传动自动化;2016年02期
3 冯安平;罗庚兴;;自动冲压加工单元设计[J];煤矿机械;2016年01期
4 刘伟;;冲压自动化的研究与规划[J];世界制造技术与装备市场;2015年06期
5 魏志辉;贺俊杰;;包车白车身模态分析[J];北华航天工业学院学报;2015年01期
6 程彬彬;黄美发;吴常林;吴芬;刘思遥;;基于ANSYS Workbench的龙门铣床横梁多目标优化设计[J];组合机床与自动化加工技术;2015年02期
7 冯江涛;赵娜;何昌传;;基于Adams的冲压机器人运动学仿真分析[J];模具制造;2015年02期
8 杨兴;;冲压车间自动化冲压设备使用与选型[J];金属加工(热加工);2015年03期
9 王凯;;全自动冲压生产线在金属零件冲压加工中的应用[J];机电工程技术;2014年07期
10 张国锋;王卫荣;;基于ANSYS Workbench的吊座尺寸多目标优化设计[J];机械工程与自动化;2014年01期
相关硕士学位论文 前7条
1 孟令洋;基于动态特性的高速列车轮对结构参数影响分析[D];西南交通大学;2015年
2 曹志锋;冲压线上下料机器人的设计与分析[D];燕山大学;2014年
3 顾以进;钣金冲压自动上下料机械手的研究与开发[D];哈尔滨工业大学;2015年
4 王建;硫化机上下料机器人的设计与开发[D];重庆大学;2014年
5 屈云涛;冲压机器人本体设计及机器人自主设计开发研究[D];燕山大学;2012年
6 唐朋飞;基于拓扑优化的重型机床立柱轻量化设计[D];苏州大学;2012年
7 陈皓;冲压自动化机器人上料工艺的优化方法[D];上海交通大学;2011年
,本文编号:1471843
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1471843.html