基于遗传粒子群算法的永磁同步电机多目标优化设计

发布时间:2018-02-04 14:24

  本文关键词: 永磁同步电机 遗传算法 粒子群算法 遗传粒子群算法 多目标优化 出处:《安徽大学》2017年硕士论文 论文类型:学位论文


【摘要】:电机在工业自动化的发展中占据着举足轻重的位置,各类型的电机作为生产原动力,消耗了大约全球总发电量的60%,因此如何对电机进行合理的优化设计成为节能降耗的重要一环。在众多类型的电机中,自起动永磁同步电机因具有较高的效率和功率因数,结构简单、体积小、能量密度高、动态性能良好等特点,被广泛地应用于交通、航天、医药和生产等众多领域。同时永磁电机也存在成本高、退磁风险等问题,需要通过优化设计提升其运行性能和降低设计成本来补偿。本文通过对永磁同步电机基本原理进行分析,并从电机的电磁设计着手,对自起动永磁同步电机算法优化设计进行了研究。论文的主要工作如下:1.介绍了电机优化与设计的发展现状以及研究趋势;介绍了遗传算法(GA)以及粒子群算法(PSO)的基本原理以及改进方法。通过对比分析两者的优缺点,采用一种优势互补的遗传粒子群优化算法(GAPSO),并论述了其基本流程。2.从自起动永磁同步电机的基本原理及结构出发,分析其电磁设计过程特点,为电机优化做准备。建立基于C++的自起动永磁同步电机的电磁计算模型。以典型型号的自起动同步电机为例进行电磁计算,通过Ansoft有限元分析软件对电机计算程序的结果准确性进行校验。3.在以上工作的基础上,以效率、功率因数等为优化目标,选定合理的优化变量,并进行相应的约束条件设置,从而建立自起动永磁同步电机的优化数学模型。然后将之结合电机的电磁计算模型形成永磁同步电机的优化设计程序。建立基于C#的简单用户界面,结合优化程序形成永磁同步电机的优化设计系统。以三台不同规格的永磁同步电机为对象进行优化设计,分析优化后电机的成本以及性能变化,说明优化算法的实用性和有效性。最后通过Ansoft有限元法对优化前后的设计方案进行二维电磁场静态、瞬态仿真,仿真结果表明优化显著改善了电机的起动性能和运行特性。
[Abstract]:Motor occupies a pivotal position in the development of industrial automation. As the primary power of production, all types of motors consume about 60% of the global total power generation. Therefore, how to optimize the design of the motor becomes an important link of saving energy and reducing consumption. Among the many types of motor, the self-starting permanent magnet synchronous motor has high efficiency and power factor, simple structure and small volume. Because of its high energy density and good dynamic performance, it has been widely used in many fields such as transportation, aerospace, medicine and production. At the same time, the permanent magnet motor also has the problems of high cost and demagnetization risk. This paper analyzes the basic principle of PMSM and starts with the electromagnetic design of PMSM. The algorithm optimization design of self-starting permanent magnet synchronous motor (PMSM) is studied. The main work of this paper is as follows: 1. The basic principle and improved method of genetic algorithm (GA) and particle swarm optimization (PSO) are introduced. A genetic particle swarm optimization algorithm with complementary advantages is adopted, and its basic flow is discussed. 2. The basic principle and structure of self-starting permanent magnet synchronous motor (PMSM) are discussed. The characteristics of the electromagnetic design process are analyzed to prepare for the optimization of the motor. The electromagnetic calculation model of the self-starting permanent magnet synchronous motor based on C is established. The typical self-starting synchronous motor is taken as an example to carry out the electromagnetic calculation. On the basis of the above work, the efficiency, power factor and other optimization objectives are selected to select the reasonable optimization variables. 3. The Ansoft finite element analysis software is used to check the accuracy of the results of the motor calculation program. 3. Based on the above work, the efficiency, power factor and other optimization objectives are selected. And the corresponding constraints are set. The optimization mathematical model of the self-starting permanent magnet synchronous motor is established, and then the optimization design program of the permanent magnet synchronous motor is formed by combining the electromagnetic calculation model of the motor. A simple user interface based on C # is established. The optimization design system of PMSM is formed by combining the optimization program. Three PMSM with different specifications are taken as the object to optimize the design, and the cost and performance of the PMSM after optimization are analyzed. Finally, the Ansoft finite element method is used to simulate the static and transient electromagnetic field before and after optimization. The simulation results show that the optimization greatly improves the starting performance and running performance of the motor.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TM341

【参考文献】

相关期刊论文 前10条

1 王建设;徐荣;孙友增;;永磁同步电动机发展现状综述[J];科技与创新;2016年16期

2 王霖;;浅谈稀土永磁同步电动机的优化设计[J];科技创新与应用;2016年10期

3 王菲菲;徐尔;赵金玲;;无约束多目标优化的一种新的拟牛顿法[J];河南师范大学学报(自然科学版);2016年01期

4 谢颖;李吉兴;杨忠学;张岩;;改进遗传蚁群算法及其在电机结构优化中的研究[J];电机与控制学报;2015年10期

5 冯桂宏;丁宏龙;;基于混合Taguchi遗传算法的永磁同步电机优化设计[J];电工电能新技术;2015年01期

6 李金忠;杨威;夏洁武;曾小荟;孙凌宇;;基于Hooke & Jeeves模式搜索的排序学习方法[J];计算机工程;2015年07期

7 高响;王步来;沈业成;张帆;黄真真;;异步起动永磁同步电动机分析与设计[J];微特电机;2014年10期

8 卢锦玲;苗雨阳;张成相;任惠;;基于改进多目标粒子群算法的含风电场电力系统优化调度[J];电力系统保护与控制;2013年17期

9 王光辉;陈杰;蔡涛;李鹏;;多目标分解随机粒子群优化算法及其在直线电机优化设计中的应用[J];控制理论与应用;2013年06期

10 李立毅;唐勇斌;刘家曦;潘东华;;多种群遗传算法在无铁心永磁直线同步电机优化设计中的应用[J];中国电机工程学报;2013年15期

相关硕士学位论文 前1条

1 王t;基于场路结合的永磁同步电机分析与优化[D];浙江大学;2013年



本文编号:1490429

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1490429.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e64ee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com