多运动模式仿蠕虫气动柔性机器人关键技术研究

发布时间:2018-05-24 07:06

  本文选题:柔性机器人 + 柔性驱动器 ; 参考:《南京理工大学》2017年硕士论文


【摘要】:传统的机器人一般由各种刚性结构件通过运动副连接构成,由于刚性结构的本体对环境的适应能力差,机器人很难在地形复杂的情况下工作。而柔性机器人由于采用可承受大应变的柔软材料制造,具有无限多的自由度和较强的变形能力,能够适应各种不规则的复杂环境,因此,在侦察、探测、救援及医疗等领域均有着广阔的应用前景。针对现有柔性机器人存在运动形式单一、变形利用率不高、结构复杂等问题,本文提出并研究了一种多运动模式的仿蠕虫气动柔性机器人。该机器人采用压缩空气驱动,结构简单紧凑,运动灵活,不仅可以实现直线爬行前进,还可以进行转弯、掉头等运动。本文完成的主要研究工作包括:(1)通过分析蠕虫生物的运动机理,模仿蚯蚓的蠕动爬行,研究设计了气动仿蠕虫柔性机器人的运动步态及总体结构。(2)对柔性驱动器的结构模型进行合理的简化,利用有限元分析软件研究了驱动器的截面形状、硅橡胶材料的硬度、驱动器气腔的壁厚以及纤维环尺寸的大小对驱动器轴向伸长变形能力的影响。通过优化设计参数,使柔性驱动器在较低的气压下,具有较大的轴向伸长变形能力。(3)设计制作了仿蠕虫气动柔性机器人实物样机,并对蠕虫机器人的关键部分-柔性驱动器进行了伸长与弯曲变形试验研究。将试验结果与仿真结果进行对比,结果表明:在相同的条件下,实验结果与仿真模型结果基本吻合。对柔性驱动器的变形响应特性进行了试验研究,试验结果表明:在有效的变形范围内,驱动器充气与排气响应时间变化趋势相同;相同的压力驱动下,驱动器充气变形响应时间比排气变形响应时间要长。(4)研究设计了蠕虫机器人的样机控制系统,实现了对蠕虫机器人运动的实时控制。根据样机的运动步态,建立了蠕虫机器人的运动速度模型。将蠕虫机器人样机在不同的条件下进行了直行、转弯及爬坡等各项运动性能的试验测试。试验结果表明:当纤毛爬行足的角度为70°,蠕虫机器人爬行在橡胶板上时,其运动速度最快,约为7.75mm/s。蠕虫机器人在光滑的桌面上,一个转弯运动周期可以转过20°。蠕虫机器人在橡胶板上最大爬坡角度达到了 30°。
[Abstract]:The traditional robot is usually made up of a variety of rigid structures connected by moving pairs. Due to the poor adaptability of the rigid structure body to the environment, it is difficult for the robot to work in the complex terrain. Because flexible robots are made of flexible materials that can withstand large strain, have infinite degrees of freedom and strong deformation ability, they can adapt to various irregular and complex environments, so they are detecting and detecting. Rescue and medical treatment and other fields have a broad application prospects. In order to solve the problems of single motion form, low efficiency of deformation utilization and complex structure of the existing flexible robot, this paper presents and studies a multi-mode worm simulating pneumatic flexible robot. The robot is driven by compressed air, with simple and compact structure and flexible motion. It can not only realize straight line crawling forward, but also make turn, turn around and so on. The main research work done in this paper includes: 1) by analyzing the motion mechanism of worm, we imitate the creep of earthworm. The kinematic gait and overall structure of pneumatic worm flexible robot are designed to simplify the structure model of flexible actuator reasonably. The cross section shape of actuator and the hardness of silicone rubber material are studied by using finite element analysis software. The influence of the wall thickness of the gas chamber and the size of the fiber ring on the axial elongation and deformation of the actuator. By optimizing the design parameters, the flexible actuator has a large axial elongation and deformation ability under low pressure. The elongation and bending deformation of flexible actuator, the key part of worm robot, are studied. The experimental results are compared with the simulation results. The results show that the experimental results are in good agreement with the simulation results under the same conditions. The deformation response characteristics of the flexible actuator are studied experimentally. The experimental results show that in the effective deformation range, the change trend of the aeration and exhaust response time of the actuator is the same, and that of the same pressure drive, The response time of inflatable deformation of actuator is longer than that of exhaust. 4) the prototype control system of worm robot is designed and the real time control of worm robot is realized. According to the motional gait of the prototype, the speed model of worm robot is established. The worm robot prototype was tested under different conditions, such as direct running, turning and climbing. The experimental results show that when the angle of ciliated crawling foot is 70 掳and the worm robot crawls on the rubber plate, its speed is the fastest, about 7.75 mm / s. A worm robot on a smooth desktop can turn around 20 掳in a turning cycle. The maximum climbing angle of worm robot on rubber plate is 30 掳.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242

【参考文献】

相关期刊论文 前10条

1 王绪;费燕琼;许红伟;朱宇航;;仿尺蠖蠕动模块化软体机器人的设计[J];高技术通讯;2015年Z1期

2 何斌;王志鹏;唐海峰;;软体机器人研究综述[J];同济大学学报(自然科学版);2014年10期

3 刘磊;李娟;李伟达;秦佳;;谐振式微型管道机器人设计与实验[J];哈尔滨工程大学学报;2014年08期

4 费燕琼;吕海洋;沈星尧;;模块化软体机器人运动模式[J];上海交通大学学报;2013年12期

5 谭民;王硕;;机器人技术研究进展[J];自动化学报;2013年07期

6 徐扬生;阎镜予;;机器人技术的新进展[J];集成技术;2012年01期

7 郁树梅;王明辉;马书根;李斌;王越超;;水陆两栖蛇形机器人的研制及其陆地和水下步态[J];机械工程学报;2012年09期

8 曹玉君;尚建忠;梁科山;范大鹏;马东玺;唐力;;软体机器人研究现状综述[J];机械工程学报;2012年03期

9 黄永安;熊蔡华;熊有伦;;智能机器人与应用的现状与发展趋势[J];国际学术动态;2009年04期

10 赵光明;宋顺成;孟祥瑞;;基于Yeoh本构关系橡胶超弹性材料的无网格法分析[J];应用基础与工程科学学报;2009年01期



本文编号:1928151

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1928151.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户265b6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com