RV减速器传动误差建模与分析

发布时间:2018-06-01 01:05

  本文选题:RV减速器 + 传动误差 ; 参考:《北方工业大学》2017年硕士论文


【摘要】:随着工业4.0的转型加速,"机器换人"的自动化改造过程逐步实施,大批量的机器人被组装代替人工劳动,而机器人最核心的关键就是机器人关节,特别是机器人关节的RV减速器。由于RV减速器有更高的刚度和更高的回转精度,一般在重负载部位放置RV减速器,而其他轻载部位,例如小臂、腕部和手臂等一般放谐波减速器,以达到合理的经济效益,但国内RV减速器主要是受传动精度的影响导致其发展缓慢,中国的RV减速器存在制造成本高,寿命低,在机器人上有明显振动,不能大批量生产的缺点,且国内RV减速器目前的生产功率一般都在10kw以内,最大能达到75kw,但是日本可以达到132kw,最大可以达到220kw,因此和国外的产品相比还有很大的差距,这就要求能快速的解决这些影响因素迫在眉睫。本文以RV-40E为研究对象,根据RV减速器传动原理,基于虚拟样机技术建立了 RV减速器传动误差虚拟样机模型,基于正交试验法分析了 RV减速器关键零件对传动误差的影响,推导出RV减速器传动误差的计算模型,编制传动误差计算软件,并开发出了传动误差测试平台,其主要内容如下:1.基于RV减速器的三种不同的使用方式,利用Pro/E建立三维装配模型,然后将模型导入ADAMS中,基于IMPACT冲击函数法进行接触仿真,得到不同使用方式下加载转矩与输出转角关系曲线,加载转矩与输出转角误差曲线,并对转角曲线和转角误差曲线进行二次插值拟合,得到转角曲线和转角误差曲线的趋势,根据曲线趋势分析不同使用方式下RV减速器的工作性能。结果表明:空载时外壳固定,输出盘输出,输入轴加载驱动时,针齿平均啮合力最小;支撑盘固定,外壳输出,输入轴加载驱动时,针齿平均啮合力最大;逐渐加载至额定转矩时,外壳固定,输出盘输出,输入轴加载驱动的使用方式转角误差最小,支撑盘固定,外壳输出,输入轴加载驱动的使用方式转角误差最大,输入轴固定,输出盘输出,外壳加载驱动的使用方式输出转角波动幅度最大。研究结果为RV减速器不同的使用方式提供了理论的指导。2.利用Pro/E进行参数化快速三维模型的建立并装配,建立了 RV-40E减速器刚体模型,然后导入到ADAMS中根据RV减速器的工作传动原理利用宏命令的方法进行虚拟样机约束,宏命令进行约束的方法改变了传统手动进行模型约束的弊端,减小了重复修改模型参数对样机进行重新约束的复杂度,研究结果为RV减速器传动误差虚拟样机的快速建立提供了一种有效可行的方法。3.基于正交试验法采用直观分析法和方差分析法比较针齿中心圆半径误差、摆线轮移距和等距修形量、偏心距误差和针齿半径误差对RV减速器传动误差的影响,建立了 RV减速器传动误差计算模型。研究结果表明针齿中心圆半径误差对RV减速器传动误差影响最大,偏心距误差对RV减速器传动误差影响最小,传动误差模型的建立为RV加速器合理分配关键零件的制造误差提供了理论的指导。4.根据RV减速器传动原理,进行传动误差的测试平台的设计,测试系统主要包括驱动系统、测试系统与负载系统等部件,根据国际通用测试RV减速器传动误差的标准,模拟RV减速器的工作工况。其中中央测控系统实时对RV减速器的传动误差进行测量,其结构主要有磁粉制动器、编码器、伺服电机、被测工件以及安装平台等组成,其中伺服电机提供驱动由伺服控制卡完成,两个编码器测试数据传送到主控机进行数据处理,绘制出实时测出的传动误差曲线。研究结果为RV减速器传动误差的理论研究提供了实际的验证,为RV减速器的检测提供了一种合理可靠的方法。5.基于QT开发RV减速器传动误差的计算界面,基本功能实现根据关键零件的制造误差实现RV减速器传动误差的快速计算,并能展示基于正交试验法所做的27次传动误差曲线,改变了传统对RV减速器传动误差理论计算繁琐的问题,能清晰展示RV减速器传动误差曲线,使其结果更加直观易懂,研究结果为RV减速器传动误差的快速计算提供了一种便捷的工具。
[Abstract]:With the acceleration of industrial 4 transformation, the automatic transformation process of "machine replacement" is gradually implemented, and large quantities of robots are assembled instead of manual labor. The key key of the robot is the robot joint, especially the RV reducer of the robot joint. Because the RV reducer has higher rigidity and higher rotary precision, it is generally in the heavy burden. The RV reducer is placed in the load part, and other light load parts, such as the small arm, wrist and arm, are generally placed in the harmonic reducer to achieve reasonable economic benefits. But the domestic RV reducer is mainly affected by the transmission precision, which leads to its slow development. The RV reducer in China has a high manufacturing cost, low life and obvious vibration on the robot. The shortcomings of mass production, and the current production power of the domestic RV reducer is generally within 10kW, the maximum can reach 75kW, but Japan can reach 132kw, the maximum can reach 220kw, so there is a big gap compared with the foreign products, which requires the rapid solution of these factors is imminent. This paper is based on RV-40E According to the transmission principle of the RV reducer, the virtual prototype model of the transmission error of the RV reducer is set up based on the virtual prototyping technology. Based on the orthogonal test method, the influence of the key parts of the RV reducer on the transmission error is analyzed, the calculation model of the transmission error of the RV reducer is derived, the calculation software of the transmission error is compiled and the transmission is developed. The main contents of the error testing platform are as follows: 1. based on three different ways of using the RV reducer, the 3D assembly model is established by Pro/E, then the model is introduced into ADAMS, and the contact simulation is carried out based on the IMPACT impact function method, and the relationship between the load torque and the output angle under different use modes is obtained, and the torque and the output angle are loaded. The error curve is two times interpolated to the angle curve and the angle error curve, and the trend of the angle curve and the angle error curve is obtained. According to the curve trend, the working performance of the RV reducer under different use modes is analyzed. The results show that the average rodent force of the needle tooth is the best when the outer shell is fixed, the output disk is lost, and the input shaft is loaded. Small; when the support plate is fixed, the outer shell is output and the input shaft is loaded and driven, the average meshing force of the needle tooth is maximum; when the load is gradually loaded to the rated torque, the shell is fixed, the output disk is output, the input shaft is driven by the input shaft, and the angle error is the smallest, the support disk is fixed, the outer shell is output, and the input axis is driven by the loading shaft, and the input axis is the largest, the input axis is fixed. The output disc output and the use mode of the shell loading drive the maximum fluctuation amplitude of the output angle. The research results provide the theoretical guidance for the different use mode of the RV reducer..2. uses Pro/E to establish and assemble the parameterized and fast three-dimensional model, establishes the RV-40E reducer rigid model, and then imports it into the ADAMS according to the RV reducer. The working transmission principle uses the macro command method to restrict the virtual prototype. The method of macro command constraint changes the disadvantages of the traditional manual model constraint, and reduces the complexity of the repeated modification model parameters to reconstrain the prototype. The research results provide a rapid establishment of the virtual prototype of the transmission error of the RV reducer. The effective and feasible method.3. is based on the orthogonal test method using the direct analysis method and the variance analysis method to compare the center circle radius error of the needle tooth, the cycloid wheel shift distance and the equidistance repair quantity, the eccentricity error and the needle tooth radius error on the transmission error of the RV reducer, and the calculation model of the transmission error of the RV reducer is established. The results show the needle tooth. The center circle radius error has the greatest influence on the transmission error of the RV reducer, the eccentricity error has the least influence on the transmission error of the RV reducer. The establishment of the transmission error model provides the theoretical guidance for the manufacturing error of the RV accelerator in the rational distribution of the key parts, and the design of the testing platform for the transmission error based on the transmission principle of the RV reducer is designed and measured. The system mainly includes the driving system, the test system and the load system and so on. According to the standard of the transmission error of the RV reducer, the working condition of the RV reducer is simulated. The central measurement and control system can measure the transmission error of the RV reducer in real time. The main structure is the magnetic powder brake, the encoder, the servo motor and the measured work. The servomotor is composed of the installation platform, in which the servo motor is driven by the servo control card, and the two encoder test data are transmitted to the main control machine for data processing, and the transmission error curve of the real time measurement is drawn. The research results provide the actual verification for the theoretical study of the transmission error of the RV reducer and the detection of the RV reducer. A reasonable and reliable method.5. is developed to develop the calculation interface of the transmission error of the RV reducer based on QT. The basic function realizes the rapid calculation of the transmission error of the RV reducer according to the manufacturing error of the key parts, and can display the 27 transmission error curves based on the orthogonal test method, which changes the traditional theory of the transmission error of the RV reducer. The calculation of the complicated problem can clearly show the transmission error curve of the RV reducer, which makes the result more intuitive and easy to understand. The research results provide a convenient tool for the fast calculation of the transmission error of the RV reducer.
【学位授予单位】:北方工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP242;TH132.46

【参考文献】

相关期刊论文 前10条

1 何卫东;单丽君;;RV减速器研究现状与展望[J];大连交通大学学报;2016年05期

2 谭晶;冯志华;黄迪山;顾京君;;工业机器人RV传动链误差仿真[J];计量与测试技术;2016年01期

3 张诚;张建润;;RV减速器几何回差分析与系统参数优化设计[J];机械设计与制造工程;2015年08期

4 刘学翱;徐宏海;;RV减速器两级传动特性耦合分析[J];机械设计与制造;2015年06期

5 宋松;;工业机器人RV减速器关键部件制造及对我国精密机床发展思考[J];金属加工(冷加工);2015年08期

6 刘学翱;徐宏海;;RV减速器三维参数化建模与虚拟装配[J];机械设计与制造;2015年04期

7 陈来利;姚辰龙;王海生;;基于ADAMS的RV减速器虚拟样机设计及仿真分析[J];机械工程师;2013年09期

8 朱斌;秦伟;孙伟;刘金;;2K-V型摆线针轮减速器的动态回转传动误差分析[J];机械传动;2011年04期

9 李秋菊;刘楷安;;NGW型行星减速器的虚拟设计与运动学仿真[J];华北水利水电学院学报;2010年03期

10 侯远龙;陈机林;;基于模糊神经网络控制的电液系统研究[J];机床与液压;2007年12期

相关硕士学位论文 前4条

1 祝鹏;RV减速器的传动精度分析[D];河南科技大学;2015年

2 宋梁君;随动系统测试装置模糊控制研究[D];南京理工大学;2009年

3 张春亮;2K-V型减速机的虚拟样机仿真研究[D];天津工程师范学院;2008年

4 郭海军;2K-V型摆线针轮传动的精度分析与仿真研究[D];西北工业大学;2005年



本文编号:1962199

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/1962199.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2a015***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com