应用电磁线圈系统研究微米级颗粒的机器人辅助自动化操控
发布时间:2018-01-01 03:28
本文关键词:应用电磁线圈系统研究微米级颗粒的机器人辅助自动化操控 出处:《中国科学技术大学》2017年博士论文 论文类型:学位论文
更多相关文章: 微米级颗粒操控 电磁驱动 鲁棒控制 精准靶向运送
【摘要】:电磁驱动微米级颗粒技术由于其低创伤性以及在复杂微环境下的可达性,展现出在生物医药应用中的巨大潜力。在过去的几十年里,人们关于电磁操控微米级颗粒进行了大量的研究。然而现有的操控方案大多是于理想条件下设计,而并未考虑操控系统的不确定性或仅仅针对某一特定的不确定因素。事实上,这些被控的微米级颗粒是处于带有各种各样不确定因素的复杂环境中的。本文中,建立了一个普适的鲁棒控制方案,以精确的操控由集成机器人电磁线圈系统驱动的微米级颗粒,同时保证了整个操控系统的稳定性。本文从以下三个方面进行展开。首先,利用电磁线圈驱动系统,建立了一种自动操控微米级颗粒进行轨迹跟踪的方案。所用的微米级颗粒为Fe304纳米颗粒外包裹亲水琼脂糖多聚物构成的微米磁球,这种小球可表现出超顺磁性以及生物可相容性。电磁线圈系统被当成是微操控器,用来在液体环境中操控微米磁球。这种操控方法可作为体内环境中的精确靶向运送的技术基础。用微米磁球进行预设的二维及三维轨迹跟踪实验来证明本文方案的有效性。其次,设计了一种普适的鲁棒控制法,使得操控系统能够应对多样化的系统不确定因素。本文把"输入-状态稳定性"理论与反步控制器设计法相结合,从而使被控系统达到输入-状态稳定。这个方法已成功的应用在控制磁性微米级颗粒的轨迹跟踪里,并保证了在不确定外界干扰下,整个被控系统的稳定性。进一步地,为解决线圈漏磁导致驱动磁力不足这一问题,本文还建立了一种基于输入-状态稳定理论的容错控制法。本文的研究第一次将输入-状态稳定理论与电磁操控微米级颗粒技术相结合,设计了一种鲁棒的闭环控制器,以处理操控系统中的多种不确定因素。最后,基于受控的机器人电磁线圈系统,本文还设计了一种非线性高增益观测器,用以估计被控微粒的速度。在这个非线性观测器中,用较高的增益来抑制估计误差,而用较低的增益来降低状态的稳态误差。这种集成了输入-状态稳定性理论以及带观测器的控制方法,可以在系统不确定因素及测量误差的同时存在的情况下,不依赖速度的直接测量而达到控制目标。数值仿真以及实验都验证了这种控制方案的可行性。概括来说,基于机器人辅助的电磁线圈操控系统能够提供强有力的平台,以实现微米级磁性颗粒的精准驱动。本文所提出的普适鲁棒控制方案,解决了操控中存在系统不确定因素这一可能严重影响控制结果的挑战性问题。而带有速度估计的控制方案避免了从视觉反馈中难以获取被控颗粒速度这一问题。该研究在生物医药领域中靶向运送这一应用里,奠定了大批量微粒精确运动控制的技术基础。
[Abstract]:Because of its low traumatic and accessibility in the complex micro environment of micron particles in electromagnetic drive, show great potential in biomedical applications. In the past few decades, people on the electromagnetic manipulation of micron particles was studied. However the existing control schemes are mostly in ideal condition design however, did not consider the uncertainty of the control system or only for a particular uncertainty. In fact, these charged micron particles is with all kinds of complicated uncertain environmental factors. In this paper, established a robust universal control scheme, the submicron particles in a precise control driven by integrated robot electromagnetic coil system, while ensuring the stability of the whole control system. This paper from the following three aspects. Firstly, the electromagnetic coil driving system is built An automatic control scheme for trajectory tracking of micron particles. The micron magnetic ball of micron particles with Fe304 nanoparticles coated with hydrophilic agarose polymer composition, the ball can show superparamagnetic and biocompatible. Electromagnetic coil system is regarded as micro controller to control the micro magnetic the ball in the liquid environment. This control method can be used as a precise target in vivo environment to the technology based transport. Experiment was carried out to prove the validity of the scheme and the 3D trajectory tracking preset with two-dimensional micro magnetic ball. Secondly, the design of a robust universal control method, the control system can meet the variety the uncertain factors. In this paper, the combination of input to state stability theory and backstepping controller design method, so as to make the controlled system to the input state stability. This method has been successfully should be Used in magnetic control of micron particles trajectory tracking, and to ensure that in the uncertain external disturbance, the whole system stability. Further, in order to solve the coil magnetic leakage magnetic drive leads to this kind of problem, this paper has established a fault tolerant input to state stability theory and control method based on the first study. The input to state stability theory and electromagnetic manipulation of micron particles technology combined with the design of the closed loop controller is a robust, multi control system to deal with the uncertain factors. Finally, the robot controlled system based on electromagnetic wire ring, this paper also designs a nonlinear high gain observer is used to estimate charged particle speed. The nonlinear observer, with relatively high gain to suppress the estimation error, and low gain to reduce the steady state error. The integration of the input to state stability The theory and method of control with observer, in the system uncertainties and measurement errors exist at the same time, direct measurement does not depend on the speed and achieve the control objectives. Numerical simulation and experiment verify the feasibility of this control scheme. In general, the electromagnetic coil control system of robot assisted can provide a strong platform in order to achieve precise driving based on micron grade magnetic particles. The proposed universal robust control scheme, to solve the control system uncertainties may seriously affect the control results of challenging problems for this. A control scheme of speed estimation to avoid the charged particle velocity is difficult to obtain this problem from the visual feedback to ship this application. The research target in the field of biomedicine, laid the foundation of mass particle precise motion control.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TP242;TP273
【相似文献】
相关期刊论文 前6条
1 支彬安;雷彬;李治源;张洪岩;;电磁线圈驱动中CAN通信及其实现技术[J];电子工程师;2007年11期
2 单体强;陈雷;张万发;;电磁线圈炮测控系统软件研究与设计[J];计算机测量与控制;2013年05期
3 林源和;张海东;朱剑;张洪岩;;基于光纤传输的电磁线圈炮炮口测速装置[J];现代电子技术;2007年19期
4 李瑞锋;邹本贵;黄文华;王慧锦;;基于场路耦合的弹射式电磁线圈发射器动态特性研究[J];信息工程大学学报;2012年06期
5 王钊;曹延杰;王e,
本文编号:1362746
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1362746.html