ZnO微纳米柱的生长、掺杂与性质研究
发布时间:2018-02-02 17:51
本文关键词: 氧化锌 本征缺陷 间隙锌 锌空位 一维纳米结构 掺杂 出处:《南京大学》2016年博士论文 论文类型:学位论文
【摘要】:氧化锌(ZnO)是一种直接带隙Ⅱ-Ⅵ族化合物半导体材料,禁带宽度约为3.37 eV,其室温下的激子束缚能高达60 meV,在短波长光电器件领域有着广阔的应用前景。但ZnO中的p型掺杂具有较高的形成能和严重的自补偿效应,并导致大量的施主型本征缺陷与杂质,已成为制约ZnO材料发展的重大科学问题与技术困难,严重阻碍了ZnO材料优异光电性能的发挥与器件应用。与此同时,ZnO材料具有一个非常重要的特点,即可以通过多种技术与方法制备出形貌丰富的纳米结构。相比于薄膜材料,这种具有较大表体比的ZnO纳米材料的表面态密度较高,具有很高的化学活性从而降低p型掺杂或相关缺陷的形成能,可显著提高掺杂效率,有助于改善ZnO中p型掺杂的技术困难。针对ZnO材料发展中p型掺杂这一重大技术难题,本论文将ZnO的p型掺杂与纳米结构相结合,围绕一维ZnO纳米结构的制备和掺杂等相关问题,系统研究了本征和氮(N)掺杂ZnO微纳米柱阵列的结构、组态、光学等性质,以此为基础重点分析了ZnO微纳米柱内部主要的本征缺陷,如间隙锌(Zni)和锌空位(Vzn)的行为特征,并着重探讨了对相关的本征施主和受主进行有效调控的技术与方法。论文取得的研究成果主要如下:(1) 开展了本征和N掺杂ZnO微纳米柱的生长控制研究。采用基于碳热还原反应的化学气相沉积法,进行了ZnO微纳米柱的生长实验,总结得到了最优的生长条件,在ZnO模板衬底上成功制备了ZnO微纳米柱阵列。引入一氧化二氮(N20)气体同时作为N源和O源,实现了N的有效掺杂。研究表明,本征和N掺杂的ZnO微纳米柱阵列都具有很高的晶格质量,取向一致,相互平行,垂直于衬底沿c轴外延生长。(2) 深入研究了N掺杂ZnO微纳米柱的结构、晶格振动与光学等性质,掌握了本征缺陷Zni和Vzn的行为特征,揭示了它们与ZnO材料复合发光行为的内在关联,建立了研究其基本性质的综合表征手段。在N掺杂ZnO微纳米柱阵列样品的光致发光谱中指认出了和浅受主Vzn团簇相关的复合发光峰,表明N的掺杂有利于在ZnO材料中形成浅受主Vzn团簇;而具有精细双峰结构的绿带发光正是从浅施主Zni的基态及其激发态到深受主单一Vzn的辐射跃迁。(3) 研究并获得了N掺杂ZnO微纳米柱中本征缺陷的调控方法,包括对本征施主的抑制,以及引入本征受主的思路与途径。系统的研究了生长过程中不同的Ⅵ/Ⅱ比对N掺杂ZnO微纳米柱阵列样品的晶格振动、元素组态、顺磁共振以及光学等性质的影响,提出通过调控Ⅵ/Ⅱ比这一关键技术参数,在实现抑制本征施主缺陷的同时,促使浅受主Vzn团簇的稳定形成。(4) 研究了N掺杂ZnO微米柱发光光谱的空间精细分布,掌握了与VZn相关的本征受主型缺陷在微米柱内部的局域性空间分布特征,建立了N掺杂ZnO微米柱发光和缺陷分布的核壳结构模型。研究显示,自由激子发射主要来源于微米柱的核心区域,而和浅受主Vzn团簇相关的复合发光、以及和深受主单一Vzn相关的绿带发光均主要来自于微米柱的表面区域;由此表明,和Vzn相关的本征受主型缺陷主要分布在N掺杂ZnO微米柱的表面。(5) 开展ZnO微纳米柱中等价态元素和受主元素共掺杂的技术研究。采用化学气相沉积法制备了碲(Te)和N共掺杂的ZnO微纳米柱阵列,重点揭示了一维ZnO纳米结构中的Te元素在调控施主和受主方面所起到的作用。研究发现通过对Te掺杂组份的调控,既能实现对浅施主缺陷Zni的有效抑制,又能有效提升N在ZnO微纳米柱内的固溶度,为未来解决ZnO材料中p型掺杂的技术困难提供了一条可能的技术途径。
[Abstract]:Zinc Oxide (ZnO) is a kind of direct band gap II-VI compound semiconductor material, the band gap is about 3.37 eV, the exciton binding energy at room temperature up to 60 meV, has a wide application prospect in the field of short wavelength devices. But the P doped ZnO with the formation energy and the serious self the compensation effect is high, and lead to the intrinsic defects and impurities in a large number of donor type, has become a major scientific issues and technical difficulties of ZnO material development, seriously hindered the play and application of ZnO materials with excellent optical properties. At the same time, the ZnO material has a very important feature, which can be through a variety of techniques and methods preparation of nanostructures rich. Compared to the film material, the surface state density is higher than the ZnO that has a bigger body of nanometer materials, has high chemical activity so as to reduce the formation of P type doping or related defects Can, can significantly improve the doping efficiency, technical difficulties contribute to the improvement of P doped in ZnO. In order to solve the major technical problems in the development of P type ZnO doped materials, this dissertation combines P doped and nano structure of ZnO, focuses on the problem of one-dimensional ZnO nanostructures were prepared and doped with other related systems study on the intrinsic and nitrogen (N) structure, doped ZnO micro nano column array configuration, optical properties, based on the analysis of ZnO micro nano column internal main intrinsic defects, such as interstitial zinc (Zni) and zinc vacancy (Vzn) behavior, and discusses the technology and method the effective control of the donor and acceptor related. The main research achievements of this article are as follows: (1) to carry out the intrinsic and N doped ZnO micro nano column growth control research. Through chemical vapor carbon thermal reduction reaction based on phase deposition method, the ZnO micro nano column growth The optimal growth conditions, summed up the successful preparation of ZnO micro nano column array was prepared on ZnO template substrates. By introducing a two nitrogen oxide (N20) gas at the same time as the N source and O source, realize the effective doping of N. The results show that the intrinsic and N doped ZnO micro nano column array with lattice quality, high orientation, parallel to each other along the c axis perpendicular to the substrate epitaxial growth. (2) studied N doped ZnO micro nano structure column, lattice vibration and optical properties. The behavior of the intrinsic defects of Zni and Vzn, reveals the inherent correlation between them and ZnO the composite material luminescence behavior, the establishment of a comprehensive characterization methods to study its basic properties. In N doped ZnO micro nano column array samples in the photoluminescence spectra of the peaks and identified the composite shallow acceptor Vzn clusters related, shows that N doping is conducive to the formation of shallow acceptor Vzn group in the ZnO. Shuangfeng has a fine structure of clusters; and the green light is from the ground state and the excited states of shallow donor Zni to the radiation transition of single Vzn by the Lord. (3) research and the control method of N doped ZnO micro nano column of intrinsic defects, including inhibition of intrinsic donor, and the introduction of ideas and ways the acceptor. Systematic study on the growth process of different VI / II ratio of N doped ZnO micro nano column array sample lattice vibration, element configuration, effect of CIS magnetic resonance and optical properties, put forward through the regulation of VI / II ratio of the key technical parameters in suppression of intrinsic donor defects at the same time, the shallow acceptor Vzn clusters formed stable. (4) study of N doped ZnO micro column luminescence spectrum space fine local spatial distribution, grasp the intrinsic defects in the micro column internal acceptor type distribution characteristics associated with VZn, built with N Miscellaneous ZnO micron column luminescence and core-shell structure of the defect distribution model. Research shows that the core area of free exciton emission mainly comes from the micro column, and shallow acceptor Vzn clusters related recombination, and by the surface area of the main single Vzn related green luminescence were mainly from micro pillars; this shows that Vzn and the intrinsic acceptor defects mainly distributed on the surface of N doped ZnO micro column. (5) technology research of ZnO micro nano medium column element valence and acceptor co doping. Tellurium was prepared by chemical vapor deposition (Te) and N Co doped ZnO micro nano column array. It reveals the Te element of one dimensional ZnO nanostructures in play in regulating the role of donor and acceptor. The study found that through the regulation of Te dopant composition, which can effectively suppress the shallow donor defects of Zni, and can effectively improve the N in ZnO micro nano The solid solubility in the rice column provides a possible technical way to solve the technical difficulties of P type doping in ZnO materials in the future.
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN304.21
【相似文献】
相关期刊论文 前10条
1 沈海军;;微纳米动物艺术及其创作[J];艺术科技;2011年03期
2 崔铮;;微纳米加工技术及其应用综述[J];物理;2006年01期
3 金仁喜,淮秀兰;微纳米颗粒的激光去除[J];应用激光;2004年04期
4 唐俊;杜金林;;高速气流法制备微纳米粉体技术的应用[J];科技传播;2012年13期
5 王正直;辜萍;杨,
本文编号:1485103
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1485103.html