磁性液体加速度传感器的理论及实验研究
本文关键词: 磁性液体 加速度传感器 一阶浮力原理 二阶浮力原理 静态特性 动态特性 出处:《北京交通大学》2017年博士论文 论文类型:学位论文
【摘要】:磁性液体是一种兼具流动性和磁响应特性的新型功能材料。磁性液体加速度传感器的研究符合加速度传感器对于新材料的开发与利用这一发展方向。目前国内对于磁性液体加速度传感器的研究大部分集中于一维加速度传感器,对于多维加速度传感器的研究较为缺乏。在此基础上,本文提出两种分别基于磁性液体一阶浮力原理以及磁性液体二阶浮力原理的新型磁性液体二维加速度传感器模型。本文在理论方面,从磁性液体表面应力张量出发,推导了磁性液体一阶浮力原理计算公式;从圆柱形永磁体产生的磁场与无限薄通电螺线管所产生磁场等效出发,推导了磁性液体二阶浮力原理计算公式;在单个线圈及长直螺线管磁场计算的基础上,推导了均匀密绕多层扁平线圈电感计算公式:推导了磁性液体加速度传感器中惯性质量相对壳体运动时,线圈电感变化的计算公式;推导了一维及二维加速度输入时传感器的输出公式并分析了传感器静态输出特性;建立了磁性液体加速度传感器动态模型,推导了动态响应函数;分析了磁性液体加速度传感器安装磁屏蔽需满足的条件,对磁屏蔽的设计进行了讨论。本文在仿真方面,提出了磁性液体一阶浮力及二阶浮力仿真方法,并对不同参数下的一阶浮力及二阶浮力进行了仿真计算;对磁性液体加速度传感器模型的回复力及静态输出特性进行了仿真计算;对安装磁屏蔽前后的加速度传感器模型的磁场进行了仿真计算。本文在实验方面,研究了不同参数下磁性液体一阶浮力及二阶浮力大小;对线圈结构参数进行了设计;研究了信号源频率、惯性质量的参数、线圈间距、磁性液体的种类对磁性液体加速度传感器静态输出特性的影响;测量并分析了磁性液体加速度传感器的迟滞与重复性;对二维加速度下磁性液体加速度传感器测量的误差进行了实验研究;对传感器模型的动态特性进行了实验研究,并与仿真结果进行对比分析;对传感器模型安装磁屏蔽前后的性能变化进行了实验研究。在上述研究的基础上,得到如下创新性结论:(1)本文所给出的磁性液体一阶浮力仿真方法可较为简便地计算任意形状非导磁物体在磁性液体中所受到的一阶浮力大小,仿真结果与实验结果符合较好;(2)利用双重镜像法仿真计算所得的磁性液体二阶浮力大小在永磁体距离磁性液体边界较远处与实验结果符合较好;(3)不同基载液的磁性液体在饱和磁化强度、密度、相对磁化率及粘度方面均不同,对传感器模型的静态及动态性能均有较大影响;在静态特性方面采用机油基的加速度传感器模型在线性度及灵敏度方面优于水基及煤油基磁性液体,在动态特性方面,采用机油基磁性液体的加速度传感器模型拥有最小的超调量及振荡次数;(4)基于磁性液体一阶浮力原理的加速度传感器模型与基于磁性液体二阶浮力原理的加速度传感器模型在静态性能方面各有优缺点,一阶浮力传感器模型在线性度方面优于二阶浮力加速度传感器模型,但在灵敏度、迟滞与重复性方面不如二阶浮力传感器模型;而在动态特性方面两种加速度传感器模型较为接近;(5)基于磁性液体一阶浮力原理的加速度传感器模型在磁屏蔽设计时相较基于磁性液体二阶浮力原理的加速度传感器模型尺寸更小、成本更低。
[Abstract]:Magnetic fluid is a new type of functional material with mobility and magnetic response properties. Research on magnetic fluid acceleration sensor with acceleration sensor for the development of new materials and the development direction. The current research for the greater part of magnetic fluid acceleration sensor points focused on one-dimensional acceleration sensor, for the study of the lack of a multidimensional acceleration sensor. On this basis, this paper puts forward two kinds of magnetic fluid were first-order principle of buoyancy and magnetic liquid two order buoyancy principle model of magnetic fluid acceleration sensor based on two-dimensional model. In this paper, from the surface of the magnetic fluid stress tensor, deduced the formula of magnetic fluid first principle of buoyancy; from the cylindrical permanent magnet the magnetic field and the infinite thin solenoid magnetic fields generated by the equivalent of magnetic fluid derived two order original buoyancy Calculation formula; foundation calculation in single coil and long straight solenoid magnetic field, are uniformly dense around the multilayer flat coil inductance calculation formula is deduced: inertial magnetic fluid acceleration sensor in motion relative to the housing quality, calculation formula of coil inductance change; deduces the output formula of one-dimensional and two-dimensional input acceleration sensor and analysis of the static output characteristics of the sensor; a magnetic fluid acceleration sensor dynamic model, dynamic response function is derived; analyzes the conditions of magnetic fluid acceleration sensor mounted magnetic shielding required, design of magnetic shielding are discussed in this paper. In the simulation, the magnetic liquid one order and two order buoyancy buoyancy simulation method. And the first-order buoyancy under different parameters and two order buoyancy is simulated; the magnetic fluid acceleration sensor model recovery force and Static output characteristics are simulated; on the installation of the acceleration sensor and the magnetic shielding model was adopted to simulate the magnetic field. In this paper, research on different parameters of magnetic liquid one order and two order buoyancy buoyancy; the coil structure parameters were designed; the signal source frequency, parameters, inertial mass the coil spacing, effects of different kinds of magnetic fluid on the static output characteristics of magnetic fluid acceleration sensor; measurement and analysis of magnetic fluid acceleration sensor hysteresis and repeatability error of the 2D acceleration; magnetic fluid acceleration sensor was studied; the dynamic characteristics of the sensor model is studied, and a comparative analysis with the simulation results; the sensor model performance changes before and after the installation of magnetic shielding is studied. On the basis of the above research, Get the following innovative conclusions: (1) this paper presents a simulation method of magnetic fluid buoyancy can easily order buoyancy calculation of arbitrary shape and non magnetic objects are in a magnetic fluid, the simulation results agree well with the experimental results; (2) magnetic liquid two order buoyancy by double image method simulation and calculation on the permanent magnet magnetic fluid better distance farther away from the boundary is consistent with the experimental results; (3) magnetic liquid of different carrier liquid in saturation magnetization, density, viscosity and relative susceptibility were different on the sensor model of static and dynamic performance have a greater impact of the oil in the static base; the characteristics of the acceleration sensor model of linearity and sensitivity and water-based ferrofluids in dynamic characteristics, the oil based magnetic fluid acceleration sensor model has The overshoot and oscillation frequency of the minimum; (4) based on the model of magnetic fluid acceleration sensor and a buoyancy principle model of magnetic fluid acceleration sensor based on the principle of two order buoyancy in static performance has its advantages and disadvantages, a buoyancy sensor model of linearity is better than two square surface buoyancy acceleration sensor model, but in the sensitivity, hysteresis and repeatability than the two order buoyancy sensor model; while in the dynamic characteristics of two kinds of acceleration sensor is close to the model; (5) the first-order buoyancy principle of magnetic fluid acceleration sensor model in magnetic shielding design with acceleration sensor model is smaller, the magnetic fluid buoyancy two order based on the principle of lower cost based on.
【学位授予单位】:北京交通大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TP212
【参考文献】
相关期刊论文 前10条
1 王巍;;新型惯性技术发展及在宇航领域的应用[J];红外与激光工程;2016年03期
2 范浩亮;周剑锋;汪宇;;磁流体润滑非接触式机械密封系统的设计分析[J];润滑与密封;2016年01期
3 冯丽爽;姚保寅;刘惟芳;王潇;;微米光栅加速度计的加工与性能研究(英文)[J];强激光与粒子束;2015年02期
4 何新智;李德才;郝瑞参;;屈服应力对磁性液体密封性能的影响[J];兵工学报;2015年01期
5 何新智;毕树生;李德才;杨文明;;磁性液体二阶浮力原理的实验研究[J];功能材料;2012年21期
6 崔海蓉;郑金桔;杨超珍;王学锋;;磁性液体水平传感器的数值模拟与实验验证[J];中国机械工程;2012年20期
7 杨文明;李德才;冯振华;;磁性液体阻尼减振器动力学建模及实验[J];振动工程学报;2012年03期
8 杨文明;李德才;冯振华;;磁性液体阻尼减振器实验研究[J];振动与冲击;2012年09期
9 范东;李德才;姚伟君;;磁性液体磁粘效应分析及高低温下粘度变化的初步实验研究[J];化学工程师;2011年08期
10 李强;李德才;何新智;蔡玉强;李凤;;磁性液体加速度传感器的输入输出特性实验[J];北京交通大学学报;2011年04期
相关会议论文 前2条
1 杨文荣;杨庆新;孟红芳;陈海燕;刘素贞;;磁流体加速度传感器磁场的分析与设计[A];2006中国控制与决策学术年会论文集[C];2006年
2 林德明;王兴玮;王华生;张介立;胡西多;梁卓文;戚伟基;;磁性液体在扬声器中的应用研究[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
,本文编号:1509247
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1509247.html