点位实地测量随机误差二维空间分布模型研究
本文选题:点位测量随机误差 + 二维空间分布模型 ; 参考:《中国科学院大学(中国科学院东北地理与农业生态研究所)》2017年博士论文
【摘要】:GIS产品质量是用户最关心的问题之一,也是商业利润得到保证的前提,空间数据位置不确定性研究正是针对该问题提出的。矢量空间数据包括空间点元、线元和面元,其中点元构成线元,线元构成面元。因此,点元位置不确定性是空间数据位置不确定性研究的基础。该研究已形成了较为完整的理论体系,但还未应用于实践,其根本原因在于难以建立现实可用的点元误差分布模型。因此,建立实际的点元误差分布模型是位置不确定性理论应用于实践的第一步。关于点元误差分布模型的研究主要集中在数字化对点误差方面,而随着现代测绘技术的迅猛发展,实地测量数据成为GIS空间数据的重要来源之一。因此,实地点位测量误差分布模型的建立对于GIS空间数据位置不确定性研究具有越来越重要的意义。现今测量学领域仍然采用传统的“点位中误差”对实地点位测量数据进行质量描述。然而“点位中误差”作为一维精度指标难以完整描述点位误差二维分布模式,即无法准确反映测定点位的空间位置不确定性。因此,对点位实地测量随机误差的二维分布模型进行深入研究具有一定的理论和实际应用价值。本文应用现今常用的点位实地测量方法进行大量实验,结合概率论与数理统计知识和经典测量平差的相关理论,建立不同测绘技术下点位实地测量随机误差的二维分布模型,并研究其变化规律,得出如下结论:1、揭示点位实地测量随机误差服从二维正态分布应用数学方法对实地点位测量数据进行检验,得出GPS RTK和经典实地点位测量随机误差均服从二维正态分布。2、构建点位实地测量随机误差平面分布描述指标体系在点位实地测量随机误差服从二维正态分布的基础上,计算误差椭圆的几何参量,依此构建点位测量随机误差平面分布量化指标体系:误差分布方向、误差分布大小与误差分布形态。3、探究GPS RTK点位测量随机误差平面分布指标的时间变化规律得出GPS RTK测点随机误差分布指标随地方恒星时呈现二次项傅里叶函数变化规律,并且分布指标时间变化趋势之间具有一定相关性。4、提出GPS单点定位系统误差的数学改正模型发现GPS单点定位误差随地方恒星时呈现规律变化,依此建立GPS单点定位系统误差数学改正模型,经模型改正后定位精度得到较大提高。本研究建立了点位实地测量随机误差二维空间分布模型,为实地测绘产品的空间位置不确定性理论研究及实际应用提供坚实的科学依据。
[Abstract]:The quality of GIS products is one of the most concerned issues for users, and it is also a prerequisite for the guarantee of commercial profits. The research on location uncertainty of spatial data is aimed at this problem. Vector spatial data includes spatial point element, line element and surface element, where point element constitutes line element and line element constitutes plane element. Therefore, point element location uncertainty is the basis of spatial data location uncertainty research. The research has formed a relatively complete theoretical system, but it has not been applied in practice, the fundamental reason is that it is difficult to establish the practical usable point error distribution model. Therefore, it is the first step of the application of position uncertainty theory to establish the actual point error distribution model. The research of point element error distribution model is mainly focused on digital point error. With the rapid development of modern surveying and mapping technology, field measurement data become one of the important sources of GIS spatial data. Therefore, it is more and more important to establish the error distribution model for GIS spatial data location uncertainty. In the field of surveying, the traditional "point error" is still used to describe the quality of the field data. However, as a one-dimensional precision index, the "point center error" can hardly describe the two-dimensional distribution model of the point position error, that is, it can not accurately reflect the uncertainty of the spatial position of the measured point. Therefore, it is of great theoretical and practical value to study the two-dimensional distribution model of random errors in spot measurement. In this paper, a large number of experiments are carried out by using the commonly used spot field measurement methods, combining with the knowledge of probability theory and mathematical statistics and the relevant theories of classical measurement adjustment, a two-dimensional distribution model of random error of spot field measurement under different surveying and mapping techniques is established. By studying its changing law, the following conclusion is drawn: 1. It reveals that random errors of spot field measurement can be checked by mathematical method from two-dimensional normal distribution. It is concluded that the random errors of both GPS RTK and classical spot measurements are based on the two-dimensional normal distribution, and the system of describing the plane distribution of random errors of the spot field measurement is constructed on the basis of the two-dimensional normal distribution of the random errors of the spot field measurements. The geometric parameters of error ellipse are calculated, and the quantization index system of random error plane distribution of point position measurement is constructed according to this system: the direction of error distribution, The size of error distribution and the shape of error distribution. 3. The temporal variation rule of random error plane distribution index of GPS RTK spot measurement is studied. The random error distribution index of GPS RTK measurement point presents quadratic Fourier function variation law with local star time. There is a certain correlation between the time variation trend of the distribution index. 4. The mathematical correction model of the GPS single point positioning system error is proposed. It is found that the GPS single point positioning error varies with the local star time. According to this model, the error correction model of GPS single point positioning system is established, and the positioning accuracy is greatly improved after the model correction. In this study, a two-dimensional spatial distribution model of random errors in spot survey is established, which provides a solid scientific basis for the theoretical research and practical application of spatial position uncertainty of field surveying and mapping products.
【学位授予单位】:中国科学院大学(中国科学院东北地理与农业生态研究所)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:P228.4;P208
【相似文献】
相关期刊论文 前10条
1 许钟灵;抽样调查的随机误差[J];数理统计与管理;1983年06期
2 孟尔熹;随机误差[J];物理实验;1983年02期
3 唐家才;;测量平稳变化参量时随机误差的估计[J];河北工学院学报;1986年03期
4 杨贤为;气象要素观测随机误差的定量估算[J];气象;1988年02期
5 漠草;测量误差[J];数理统计与管理;1983年03期
6 张玉娟;;频率响应函数和相干函数估计中的随机误差[J];河北工学院学报;1985年02期
7 熊光楚;随机误差在频率域的传播[J];物探与化探;1988年01期
8 汉泽西;用单板机测量电阻的随机误差[J];煤田地质与勘探;1989年05期
9 Steven J.Meyer;章晓光;;随机误差和系统误差对估算可能蒸散量的影响[J];浙江气象科技;1991年02期
10 时培海;用水位~流量关系分析流量的随机误差[J];水文;1992年02期
相关会议论文 前5条
1 陈拉;黄敬峰;;几何校正中定位随机误差对结果的影响[A];《测绘通报》测绘科学前沿技术论坛摘要集[C];2008年
2 姬秉正;刘兆梅;;关于真值 随机误差 系统误差的定义[A];第六届全国高等学校物理实验教学研讨会论文集(上册)[C];2010年
3 王建武;傅文斌;杨春山;;随机误差对线阵盲角深度的影响[A];全国电磁兼容学术会议论文集[C];2006年
4 李诚志;于冰;;不同数据平滑方法的研究[A];参加第四届全国运动生物力学学术会议论文集[C];1983年
5 刘世藩;;误差理论和数据处理[A];运动生物力学研究方法[C];1986年
相关博士学位论文 前1条
1 邓彩群;点位实地测量随机误差二维空间分布模型研究[D];中国科学院大学(中国科学院东北地理与农业生态研究所);2017年
相关硕士学位论文 前2条
1 刘将军;炮位侦察校射雷达的随机误差对定位精度的影响[D];南京理工大学;2003年
2 雷涛;飞机供电系统参数测试方法研究及系统设计[D];西北工业大学;2002年
,本文编号:1904035
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/1904035.html