有机电致发光器件的载流子调控与性能研究
[Abstract]:Organic light-emitting diodes (OLEDs), which has the advantages of wide material source, full solid state active luminescence, high efficiency, flexible and thin, large area and multi-functional applications, has become a hot spot in the field of information display, and is gradually realizing large-scale commercial production. In recent years, with new materials, structure and work The rapid development of art and the in-depth study of the mechanism of luminescence have made great progress in the basic research and application technology of OLEDs. However, there are still problems in OLEDs, such as device efficiency, stability, good product rate and cost. It is necessary to continue the basic research as a breakthrough, work on the design and optimization of the device structure and study in depth. In order to solve the problems in the OLEDs, the carrier control method is used to improve the balance of the carrier in the dual luminescent layer OLEDs. The fluorescent material with bipolar characteristics is used as the carrier regulation and the luminescent layer to prepare the white light organic electroluminescent device (WOLEDs), and the organism is studied. The mechanism of heterojunction charge production layer on improving the performance of series OLEDs devices; using carrier regulation in inverted polymer solar cells (Inverted polymer solar cells, IPSCs) to prepare high performance devices based on ZnO cathode modification layer. At the same time, the mechanism of current carrier regulation is discussed and the carrier regulation structure pair is studied. In order to promote the commercial application process of OLEDs, the main research contents include: 1, the study of the effect of carrier control structure on the performance of phosphorescent OLEDs devices and the mechanism of action are cavity transmission materials N, N '-bis (naphthalen-1-yl) -N, N' -bis (phenyl) -benzidine (phenyl) -benzidine (NPB) as the hole transport layer and the first luminescent layer body, The bipolar material 4,4 '-bis (carbazol-9-yl) biphenyl (CBP) is used as the main body of the second luminescent layer, the orange phosphorescent dye bis[2- (4-tert-butylphenyl) -benzothiazolato-N, C2]iridium (acetylacetonate) (t-bt) 2Ir (t-bt) as the object. The influence and mechanism of the carrier balance and carrier complex region expansion are constructed. The study shows that the bright voltage of the optimized double layer device is 3.3 V and the maximum luminance is 30898 cd/m2. Compared with the single luminescent layer, the bright voltage is reduced by 36.5%, the brightness is increased by 174%., and the power efficiency of the dual luminescent layer is remarkable. The main function of the carrier control structure is to eliminate the highest occupant molecular orbital (highest occupied molecular orbital, HOMO) to eliminate the energy level barrier of the first luminescent layer, to reduce the accumulation of the interface carrier, and to increase the transmission channel of the electron and hole, and realize the realization of the device. The carrier is balanced, the carrier recombination area is expanded, the utilization of the carrier is improved, the high efficiency luminescence and the stability of the device are achieved. At the same time, the white light PhOLEDs is prepared by the spacer Alq3, TAPC, CBP and mCP with different carrier transmission capacity, and the influence of the interlayer on the performance of the device and the device are also studied. The mechanism of internal carrier transport and energy transfer. It is found that the lowest bright voltage 6.2V and the optimal white light CIE color coordinate (0.35,0.34).2 are obtained based on the Alq3 interlayer, and the effects of the carrier regulation structure on the performance and spectral properties of WOLEDs devices are used for the dual polar green fluorescent material 2-{4-[bis (9,9-dimethylfluoren). YL) amino]plenyl}-5- (dimesitylboryl) thiophene (flamb-1t) is used as a carrier control layer and a green luminescent layer, combined with a 3- (dicyanomethylene) -5,5-dimethyl-1- (4-dimethylamino-styryl) cyclohexene (dcddc) red light layer and a 4,4 '. The influence of the thickness of the flamb-1t bipolar luminescent layer on the performance of the device and the carrier complex core region is discussed. It is found that when the thickness of the flamb-1t increases from 3nm to 15nm, the device brightness and maximum power efficiency are significantly increased by 218% and the main function of the 330%.f1amb-1t carrier is through the bipolar transmission characteristics of the electrons and holes. It realizes the carrier transmission balance in the white light device, constructs the flamb-1t/dcddc/flamb-1t carrier trap structure and uses the direct carrier capture to realize the dcddc red light emission, thus regulating the complex center of the carrier and realizing the white light emission. When the flamb-1t is 10nm, the commissioninternationaledel'eclairage (CIE) coordinates are obtained. Under the different voltage of woleds. 0.33,0.36, the optimal WOLEDs carrier complex center position is always restricted to three stable regions, which indicates that the flamb-1t carrier control layer can effectively control the.3 of the exciton formation region, and study the effect of the performance of the organic charge generation layer on the performance of the serial OLEDs by boronsubphthalocyaninech Loride (subpc): fullerene (C60) and cobalt (II) phthalocyanine (COPC): C60 two kinds of organism heterojunction charge generation layer, respectively, to prepare high performance series OLEDs respectively. The effect of charge production layer carrier optimization on the performance of series devices is studied. The study shows that the optimization of charge generation layer can improve the heterogeneous boundary of the organism. Surface dipoles increase the number of dipoles, increase the charge generation capacity of the charge generation layer, increase the carrier transmission channel, enhance the carrier transport capacity of the charge generation layer, promote the balanced transmission of the carrier in the device, and improve the performance of the device. Through the above study, the content of the donor subpc and COPC in the charge generation layer is obtained. The maximum current efficiency is 63.6cd/a and 50.2cd/a series oleds.4 respectively. The influence of ZnO cathode modification layer on the properties of inverted PSCs is studied by low temperature annealing process, the effect of the cathode modification layer of Zinc Oxide (zincoxide, ZnO) is prepared by low temperature annealing process. The effect of the photoelectric properties of ZnO on the control of iPSCs carrier and the performance of the device is studied. The surface morphology of ZnO films can be improved by annealing process, which is mainly attributed to the distribution of heat flow, the volatilization process of solvent and the thermal decomposition process of the ZnO precursor. The energy conversion efficiency (power-conversionefficiency, PCE) of the inverted device using vacuum dynamic annealing ZnO is 4.01%, compared to the original. The performance of the bit annealed ZnO has been improved by 15.8%. The function of the vacuum dynamic annealing ZnO is to reduce the contact resistance between the ito/ active layers and suppress the leakage current. At the same time, the complex process of the carrier in the controller parts is used to improve the transmission and collection of the electrons, thus improving the performance of the device. Several different structures of OLEDs with carrier control ability provide theoretical basis and theoretical guidance for the realization of high performance devices. At the same time, the Zn O functional layer with carrier control ability can be used to improve the performance of IPSC devices. This indicates that carrier control is an effective way to realize high performance organic optoelectronic devices.
【学位授予单位】:电子科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN383.1
【相似文献】
相关期刊论文 前10条
1 付鸣;;改善器件性能的射频退火[J];仪器制造;1982年06期
2 关振东;燕秀荣;赖德生;曾世诚;刘淑敏;余惠玲;;富碲组份对碲镉汞器件性能的影响[J];激光与红外;1983年07期
3 刘显战,,张书刚,张巧云,钟青;提高敏感器件性能的措施[J];压电与声光;1994年03期
4 曲波;陈志坚;许峰;龚旗煌;;色度稳定的新型红色有机电致发光材料及其器件性能研究[J];量子电子学报;2007年01期
5 ;n-型有机场效应晶体管稳定性有望进一步提高[J];传感器世界;2009年06期
6 徐岳生;;硅材料中的杂质与缺陷对器件性能影响学习班胜利结束[J];河北工学院学报;1981年02期
7 严岳林,徐介平;超声跟踪法制作误差对器件性能的影响及补偿[J];压电与声光;1992年03期
8 J.M.Duffalo,J.R.Monkowski,吴佑华;粒子沾污与器件性能[J];微电子学;1984年04期
9 孙膺九;硅中碳的行为与影响[J];稀有金属;1984年04期
10 潘桂忠;1k×4 SRAM 研制与生产[J];微电子学与计算机;1987年02期
相关会议论文 前8条
1 耿延候;董少强;曲建飞;田洪坤;谢志元;闫东航;王佛松;;共轭分子的组装结构调控及器件性能[A];2014年两岸三地高分子液晶态与超分子有序结构学术研讨会摘要集[C];2014年
2 姚宁;邢宏伟;穆慧慧;常立红;崔娜娜;王英俭;张兵临;;石墨缓冲层对有机电致发光器件性能的影响[A];第七届中国功能材料及其应用学术会议论文集(第2分册)[C];2010年
3 方俊锋;张文俊;李晓冬;;有机小分子光伏界面修饰材料和器件性能研究[A];中国化学会第29届学术年会摘要集——第25分会:有机光伏[C];2014年
4 邱法斌;全宇军;孙彦峰;朱棋峰;刘少林;邹兆一;徐宝琨;;NASICON材料溶胶-凝胶合成工艺条件优化及其对CO_2敏感器件性能的影响[A];第八届全国气湿敏传感器技术学术交流会论文集[C];2004年
5 汝琼娜;李光平;李静;何秀坤;;SI-GaAs材料微区均匀性对门电路器件性能影响[A];中国电子学会生产技术学分会理化分析专业委员会第六届年会论文集[C];1999年
6 黄礼蓥;;高增益高效率的4GHZ 5W GaAsFET[A];1993年全国微波会议论文集(下册)[C];1993年
7 方小燕;胡皓全;赵家升;杨显清;;外部电磁干扰对SAW器件性能的影响研究[A];第十四届全国电磁兼容学术会议论文集[C];2004年
8 郝云;谢伟良;周祯华;熊绍珍;;OLED的阳极优化[A];第九届全国发光学术会议摘要集[C];2001年
相关博士学位论文 前10条
1 李庆端;有机小分子本体异质结太阳电池的性能研究[D];华南理工大学;2015年
2 李立胜;卟啉小分子体异质结太阳能电池和光电探测器的活性层形貌调控及器件性能研究[D];华南理工大学;2015年
3 李畅;聚合物/无机纳米复合体系太阳能电池光伏性能研究[D];北京理工大学;2015年
4 李玉峰;有机场效应晶体管界面修饰及性能研究[D];青岛科技大学;2015年
5 马柱;有机电致发光器件的载流子调控与性能研究[D];电子科技大学;2016年
6 夏虹;有机电致磷光器件中的主—客体材料匹配及对器件性能的影响[D];吉林大学;2006年
7 李青;电子的注入与传输对有机光电子器件性能的影响[D];电子科技大学;2013年
8 袁剑峰;酞菁铜有机场效应晶体管器件性能的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2005年
9 高志翔;有机电致发光二极管的界面行为及其对器件性能的影响[D];太原理工大学;2013年
10 李春;可溶性有机小分子电致发光器件制备与性能研究[D];华南理工大学;2011年
相关硕士学位论文 前10条
1 黄媛;基于侧链修饰的卟啉小分子太阳能电池的合成及其光伏性能研究[D];华南理工大学;2015年
2 郑灵程;衬底加热和电极修饰对有机场效应晶体管性能影响的研究[D];天津理工大学;2015年
3 蒋晶;基于溶液化方法制备有机场效应晶体管的研究[D];天津理工大学;2015年
4 李为国;基于a-IGZ0薄膜材料的半导体器件[D];山东大学;2015年
5 宋迎雪;利用阴极界面修饰提高聚合物太阳能电池的性能和稳定性[D];苏州大学;2015年
6 舒露锋;电极修饰对并五苯有机场效应管性能的影响[D];电子科技大学;2015年
7 肖曼军;活性层形貌添加剂对聚(3-己基噻吩)太阳能电池性能的影响及其机理研究[D];湘潭大学;2015年
8 毕然;界面与传输层对有机发光器件性能影响的研究[D];南京邮电大学;2015年
9 王婉;基于ACY及其衍生物的有机光电器件研究[D];电子科技大学;2012年
10 董木森;提高OLED中载流子注入和传输效率及器件性能的研究[D];天津理工大学;2011年
本文编号:2119993
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2119993.html