稀疏恢复问题中精确恢复条件的研究
[Abstract]:As a sparse optimization problem in rn space, compressed sensing is aimed at recovering raw data from noisy or partially lost observation data. It has been widely used in signal processing, image denoising, medical imaging and so on. In recent years, compression sensing has been deeply studied and developed rapidly. With the development of modern information technology, the data needed to be stored, processed and analyzed are often large scale, high dimension and complex structure, such as face image, surveillance video, biological information data and so on. Therefore, this paper focuses on sparse optimization problems resulting from the application of compressed sensing to complex high-dimensional data, including sparse solution problems with linear equality and inequality constraints, low-rank matrix restoration problems and low-rank Zhang Liang restoration problems. The relaxation approximation method in compressed sensing is used to solve the NP-hard problem. At present, the algorithm design of relaxation problem has been widely concerned by scholars, but there is not much research on the condition of guaranteeing accurate recovery. In this paper, the exact restoration conditions for the extended sparse optimization problem are systematically studied, and the following results are obtained: 1. Considering the exact restoration condition of sparse solutions of absolute value equations, the equivalent deformation of absolute value equations and bilinear programming is adopted. The problem of solving the sparse solutions of absolute value equations is equivalent to the l0 minimization problem with linear equality and inequality constraints. Based on the analysis of the properties of the range space, the existence and uniqueness conditions of the optimal solution for the convex relaxation of the problem are obtained, and then it is proved that the original problem is equivalent to its convex relaxation under this condition. According to the enlightenment of this research method and the results, we discuss the exact recovery condition of the problem around the sparse optimization problem with linear constraints of general equality and inequality. Some examples are given to verify the correctness of the theoretical results. 2. In this paper, we discuss the exact restoration condition of the low rank matrix restoration problem by non-convex Schatten-p quasi-norm minimization problem, and give a p-RIP condition to guarantee the successful recovery. It is also proved that the p-RIP condition can be encountered with a very high probability by the number of observations. In this paper, three kinds of exact restoration conditions for low rank Zhang Liang restoration problems are generalized to Zhang Liang spaces. Then we consider a low rank Zhang Liang restoration model with both noise-free and noise-free, which is called minimum n- rank approximation, and propose an iterative hard threshold algorithm for solving this problem. It is also proved that the algorithm converges globally linearly at a rate of 1 / 2 under certain conditions for noise-free cases, but the distance between the iterative sequence and the real value in the case of noise decreases rapidly. Numerical experiments verify the theoretical results and show that the algorithm is fast and effective for solving the low nrank Zhang Liang filling problem.
【学位授予单位】:天津大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 周亮,高翔,朱秀昌;一种新硬阈值算法在临场感系统中的应用[J];计算机工程与应用;2005年33期
2 胡智宏;尹小正;路立平;;一维信号小波压缩的能量动态自适应阈值算法[J];科学技术与工程;2012年18期
3 周亮;;一种新型硬阈值算法在图像去噪中的应用[J];军事通信技术;2005年S1期
4 田玉静;左红伟;;小波消噪阈值算法优化[J];声学技术;2009年04期
5 原玉磊;郑勇;;一种大视场星图星点提取的阈值算法[J];海洋测绘;2011年05期
6 李礁;;基于色彩矩阵优化的自适应阈值算法[J];信息系统工程;2011年08期
7 张天瑜;于凤芹;;自由分布式FDR假设检验阈值算法的研究[J];武汉理工大学学报;2009年06期
8 高翔;周亮;戎舟;;改进型软阈值算法在临场感系统中应用研究[J];计算机工程与设计;2006年02期
9 杨海蓉;方红;张成;韦穗;;基于回溯的迭代硬阈值算法[J];自动化学报;2011年03期
10 李小静;李冬梅;梁圣法;;一种改进的迭代硬阈值算法[J];科学技术与工程;2014年14期
相关会议论文 前2条
1 张晓星;彭莉;唐炬;高丽;;一种基于复小波变换提取PD信号的分块自适应复阈值算法'[A];08全国电工测试技术学术交流会论文集[C];2008年
2 杨伟;;模糊软矩阵及其格结构[A];中国运筹学会模糊信息与模糊工程分会第五届学术年会论文集[C];2010年
相关博士学位论文 前4条
1 张敏;稀疏恢复问题中精确恢复条件的研究[D];天津大学;2016年
2 贺杨成;半监督低秩矩阵学习及其应用[D];上海交通大学;2015年
3 陈梅香;广义二次矩阵的若干研究[D];福建师范大学;2016年
4 郝晓丽;粒度格矩阵空间模型及其应用研究[D];太原理工大学;2009年
相关硕士学位论文 前10条
1 田方彦;一种改进的迭代收缩阈值算法[D];河北工业大学;2015年
2 王玉藏;压缩感知在无线传感器网络中的应用[D];燕山大学;2015年
3 崔翔;基于卷积压缩感知的确定性测量矩阵研究[D];北京化工大学;2015年
4 吴曼;SDN在IP网络的流量调度应用研究[D];电子科技大学;2015年
5 王浩;带噪声抑制的流量矩阵估计方法研究[D];电子科技大学;2015年
6 张婷婷;基于低秩矩阵填充与恢复的图像去噪方法研究[D];河北工业大学;2015年
7 邓爱淘;基于LDPC码的压缩感知测量矩阵研究[D];湘潭大学;2015年
8 白平;基于拓展全息矩阵的变胞机构创新设计研究[D];武汉轻工大学;2015年
9 吴越;Vandermonde矩阵的理论与应用研究[D];安徽大学;2016年
10 曹萌;几类Bezout矩阵的研究[D];安徽大学;2016年
,本文编号:2120763
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2120763.html