液相基底表面金属纳米结构形成机理的计算机模拟
[Abstract]:In this paper, using the Monte Carlo simulation method, three computer models are established to simulate the formation process of many metal nanostructures on the surface of the liquid base, and the simulation results are compared with the experimental data to explain the formation mechanism. The simulation results are deeply analyzed and studied, and the different simulation parameters are obtained. The influence of the morphology, size distribution and growth mechanism of nanostructures, and suggestions for improving and guiding the experiment are proposed. In order to study the formation mechanism of clusters (including branched condensate and nanoparticle), according to the experimental results, we hypothesized that when the total number of particles in the cluster is larger than the critical size, the edge particles have a certain probability. The improved CCA model (RCCA model) is established. The simulation results show that with the increase of the diffusion step and the number of deposited particles, the number of up particles is increasing and the clusters change from two-dimensional to three-dimensional condensation. Statistics show that the coverage rate is from 0.02 ML to 0.22 ML, and the coverage rate is low (0.06ML), and the coverage rate is low (0.06ML). With the increase of the number of deposited particles, the number of deposited particles gradually deviates from the linear relationship between the coverage and the number of the deposited particles. This result is in line with the experimental data. With the increase of the number of particles and the diffusion step, the average height of the cluster increases and then gradually tends to saturation. The relationship between the number density of the cluster, the nominal deposition thickness and the coverage rate, we set up the cluster condensation and collapse model (CAC model). It is assumed that the cluster with a certain size has a certain collapse probability in the process of condensation. The simulation results show that the coverage rate is consistent with the experimental phase as the number of sedimentary particles increases. When the number of sedimentary particles is less, the size of the cluster is mostly not more than the critical size, and the coverage rate increases linearly with the number of deposited particles. When the number of sedimentary particles is further increased, the size of clusters is more than adjacent size, the volume collapse of clusters can occur randomly, and the size of the coverage rate oscillates a certain extent. In addition, the density of the average cluster increases gradually, and the density of all clusters gradually tends to the stable value. A new model (OCG model) is established by using the experimental facts that have the optimal growth direction in the process of crystal growth, which is used to study the formation mechanism of one dimensional zinc crystal on the surface of the liquid phase, and the simulation results are in agreement with the experimental facts. It is found that the length and width distribution of the one-dimensional crystal conform to the logarithmic normal distribution, which is in accordance with the results observed in the experiment. With the increase of the number of nucleation N, the length and width distribution peak gradually narrowed and relatively concentrated, and the average length and width are gradually reduced, and (1/N) 0.60 and (1/N) 0. respectively. The probability distribution of these one-dimensional crystals with different sizes is statistically analyzed. The results show that in general, the relatively longer or wider one-dimensional crystals have smaller probability of formation; but with the decrease of N, the formation probability of slender one-dimensional crystals increases. The chapters in this paper are arranged as follows: Chapter 1: first of all, a brief introduction is made. Traditional film preparation, characterization method and basic physical properties are introduced. The basic theories about atomic clusters, condensate and film growth mechanism are expounded. The latest progress in the research on the growth mechanism of thin film on various substrate surfaces is introduced. Then, the computer simulation research on the growth mechanism of thin films on different substrate surfaces is introduced. Finally, the main contents and significance of this paper are expounded. In the second chapter, on the basis of the CCA model, if the number of particles in the cluster is more than the critical size, its marginal particles move to the first layer in a certain probability, thus the improved CCA model is established. The cohesive mechanism of the polytransformation and the variation of the surface coverage rate and the average height with each parameter are studied. Third chapter: assuming that the cluster has a certain collapse probability after the critical size of the cluster, a non lattice condensation collapse model is established, and the variation of the coverage rate and the cluster density caused by the collapse are systematically studied. The fourth chapter: Based on the experimental fact that some crystals have preferential growth direction, a one-dimensional crystal growth model is established on the square lattice with periodic boundary conditions. The one-dimensional condensation mechanism of the atoms on the surface of the isotropic liquid base is explained and the length and width of such crystals are systematically analyzed. In the end, the prospect of the new growth mechanism in the future is prospected. In the fifth chapter, the results of this paper are summarized, and the future work and future research direction are prospected.
【学位授予单位】:浙江大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TB383.1;TP391.9
【相似文献】
相关期刊论文 前10条
1 张婧瑜;朱彤;安巍;;四种金属纳米杆粒子辐射特性的对比分析[J];节能技术;2013年01期
2 ;费广涛小组取得金属纳米线热膨胀研究新进展[J];光机电信息;2009年06期
3 陈婕;陈莹;赵浩岚;;基于周期性金属纳米结构的全光开关研究[J];光通信研究;2013年06期
4 杨盈莹;张永亮;赵震声;段宣明;;双金属纳米天线在少周期激光中的宽带超快电磁响应[J];物理学报;2012年01期
5 张敏;丁士进;陈玮;张卫;;金属纳米晶快闪存储器研究进展[J];微电子学;2007年03期
6 罗庭军;万玲玉;黄继钦;庞霖;张卫平;;三角形金属纳米结构的局域表面等离共振传感特性与优化分析[J];光学学报;2013年05期
7 方明;宋开宏;王娟娟;黄志祥;吴先良;;金属纳米柱天线的快速电磁分析[J];光子学报;2014年03期
8 周朕;史林兴;;金属纳米栅格薄膜等离激元太阳能电池的优化设计[J];激光与光电子学进展;2012年11期
9 付建国;;近红外波段的金属纳米腔激光器[J];光机电信息;2009年11期
10 蔡积庆;;印刷电子用导电性油墨材料的开发[J];印制电路信息;2013年01期
相关会议论文 前10条
1 王仲珏;;金属纳米变质技术新进展[A];2010年中国铸造活动周论文集[C];2010年
2 李志远;;金属纳米微结构和颗粒的表面等离子体共振[A];中国光学学会2006年学术大会论文摘要集[C];2006年
3 黄川;宋晓艳;魏君;韩清超;;金属纳米晶热稳定性的计算机仿真与实验研究[A];第十二届中国体视学与图像分析学术会议论文集[C];2008年
4 李亚栋;;金属纳米催化[A];第六届全国物理无机化学会议论文摘要集[C];2012年
5 李亚栋;;金属纳米催化[A];第十二届固态化学与无机合成学术会议论文摘要集[C];2012年
6 宋晓艳;张久兴;李乃苗;高金萍;杨克勇;刘雪梅;;金属纳米晶和纳米粒子材料热力学特性的模拟计算与实验研究[A];2005年全国计算材料、模拟与图像分析学术会议论文集[C];2005年
7 王树林;李生娟;杜妍辰;徐波;李来强;朱岩;;金属纳米结构的干法室温大规模制备[A];第八届全国颗粒制备与处理学术和应用研讨会论文集[C];2007年
8 吴炳辉;陈光需;代燕;郑南峰;;贵金属纳米晶的表界面调控[A];第十二届固态化学与无机合成学术会议论文摘要集[C];2012年
9 郭霞;张巧;叶伟;谢芳;赵清;杨剑;;金基纳米棒的选择性腐蚀制备新颖多金属纳米结构[A];中国化学会第29届学术年会摘要集——第33分会:纳米材料合成与组装[C];2014年
10 童明良;刘俊良;冷际东;郭鹏虎;;系列4f/3d-4f金属纳米分子磁体的组装与磁-构关系研究[A];中国化学会第28届学术年会第8分会场摘要集[C];2012年
相关重要报纸文章 前3条
1 本报记者 危丽琼;双金属纳米簇催化剂“1+1>2”[N];中国化工报;2013年
2 张巍巍;美开发出高度控制金属纳米结构的方法[N];科技日报;2012年
3 记者 毛黎;碳纳米管与金属纳米导线成功连接[N];科技日报;2007年
相关博士学位论文 前10条
1 孙明斐;异常一维金属纳米结构弹性及塑性的分子动力学模似表征[D];复旦大学;2014年
2 李楠庭;石墨烯负载金属纳米结构的制备及性能表征[D];南京大学;2015年
3 宋玮;多肽/金属纳米簇的制备及其用于生物分析检测研究[D];南昌大学;2015年
4 伍铁生;基于金属纳米结构的光传输特性及其应用研究[D];北京邮电大学;2015年
5 王超;Ir基贵金属纳米晶制备及其催化性质研究[D];吉林大学;2016年
6 武振楠;基于金属纳米点的超薄二维组装结构构筑[D];吉林大学;2016年
7 吴菲菲;金属纳米结构的构筑及其在传感中的应用[D];吉林大学;2016年
8 程毅;液相基底表面金属纳米结构形成机理的计算机模拟[D];浙江大学;2016年
9 夏良平;基于金属纳米结构的纳光子器件研究[D];中国科学院研究生院(光电技术研究所);2014年
10 古杨;基于局域表面等离激元共振的金属纳米结构折射率传感[D];武汉大学;2011年
相关硕士学位论文 前10条
1 祝国民;原位液体透射电镜芯片的研发及基于此技术的贵金属纳米晶生长和刻蚀研究[D];浙江大学;2015年
2 倪媛;贵金属纳米结构的可控合成及其光热效应研究[D];南京航空航天大学;2015年
3 杨荣;贵金属纳米晶合成及其性能研究[D];浙江理工大学;2015年
4 吴佳;基于金属纳米簇的光学分析方法研究[D];陕西师范大学;2015年
5 赵婷;贵金属纳米结构的消光特性研究[D];陕西师范大学;2015年
6 蔡正杰;表面等离激元诱导的金属纳米宽单频带和窄多频带光透明特征研究[D];江西师范大学;2015年
7 韩淑华;中空、多孔贵金属纳米结构的构筑及其机理、性能研究[D];温州大学;2015年
8 沈琪;金属纳米颗粒阵列的局域表面等离激元共振研究[D];南京大学;2014年
9 王婧;金属纳米结构在超宽带电磁波中的局域增强特性及应用研究[D];电子科技大学;2014年
10 刘花;荧光性的金属纳米簇合成及传感性能研究[D];浙江师范大学;2015年
,本文编号:2129416
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2129416.html