混沌系统的鲁棒性研究及在图像加密中的应用
[Abstract]:The vigorous rise of science and technology and information technology has brought the opportunity of the rapid development of information technology to the whole world. While enjoying the enormous benefits brought by the information network, people are also faced with the enormous challenge of information security. As an important carrier and transmission medium of information, the security of image has been paid more and more attention. The core tool of information security is encryption. With the increasing complexity of communication environment and the improvement of decoding ability, some traditional cryptographic algorithms are compromised or their security is threatened, which requires more advanced cryptographic design theory and innovative technology. The discovery of chaos is the third revolution in physics in the 20 th century. Some characteristics of chaotic dynamics coincide with the requirements of cryptography. Chaotic cryptography has become one of the hot topics in cryptography. In 1975, Li-Yorke first defined the term of chaos in mathematical language, and put forward a famous theorem of chaos in three cycles. Zhou Hailing and Song Enbin put forward and proved a chaotic robust theorem about quadratic polynomials by using Li-Yorke theorem. Yang Xiuping and others proposed and proved a chaotic robustness theorem for cubic polynomials. In 1999, Banerjee et al proposed a chaotic robust theorem for standard forms of two-dimensional piecewise smooth mappings. In 2001, Andrecut et al proposed a chaotic robust theorem for S unimodal mappings. Min Lequan and Chen Guanrong proposed an image encryption scheme SESAE based on d bit key stream which has the effect of key avalanche and increases the difficulty of deciphers. Based on the previous work, the robustness, pseudo random number generator and avalanche image encryption scheme of discrete chaotic systems are studied in this paper. The main achievements and innovations of this paper are as follows: (1) the robustness of some discrete chaotic systems is studied in this paper based on Li-Yorke chaos discrimination theorem and chaotic discriminant theorem of S unimodal mapping. A robust chaos theorem for constructing one-dimensional piecewise nonlinear mappings and a robust chaos theorem for cubic polynomial mappings are presented. By improving the chaos robust theorem of the standard form of two-dimensional piecewise smooth mapping, this paper presents the equivalent chaos discrimination theorem for the standard form of two-dimensional piecewise smooth mapping, and gives the necessary conditions for constructing four-dimensional discrete chaotic mapping. This paper provides a theoretical proof for constructing chaotic system and a new tool for chaotic application. (2) the design and performance detection of pseudorandom number generator is based on the new robust chaos theorem of discrete system. Six new discrete chaotic generalized synchronization systems are constructed by trigonometric functions and chaotic generalized synchronization theorems. Using these six discrete chaotic generalized synchronization systems, this paper optimizes the design of six chaotic pseudorandom number generators (CPRNGs).) with large key space. The pseudorandom performance of CPRNGs and RC4 algorithm is tested by using the improved FIPS 140-2 and SP800-22 detection standards published by (NIST) of the National Institute of Standards and Technology. The results show that the random performance of CPRNGs is comparable to that of RC4 algorithm and ZUC algorithm. The 14-15 items detected by SP800-22 of two CPRNGs are superior to those of RC4 and ZUC. (3) A stream encryption scheme with key avalanche and clear text avalanche and a block encryption avalanche scheme are proposed in this paper. The research work of image encryption scheme SESAE with avalanche effect is generalized.
【学位授予单位】:北京科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP309.7
【相似文献】
相关期刊论文 前10条
1 陈娟;陆君安;;非恒同混沌系统的全状态广义同步[J];控制理论与应用;2009年09期
2 朱洪波,肖井华,李向明;耦合映射的混沌广义同步[J];北京邮电大学学报;1999年03期
3 李响;张荣;徐振源;;一类参数不确定混沌系统特殊的线性广义同步[J];计算机仿真;2010年04期
4 张峰;王燕飞;郑翔玉;张开闩;;自适应线性广义同步方法[J];计算机与现代化;2014年03期
5 徐训霞;丁建旭;过榴晓;;给定流形自适应广义同步及在保密通信中的应用[J];江南大学学报(自然科学版);2013年01期
6 江正仙;丁建旭;过榴晓;徐振源;;带脉冲控制的给定流形的混沌广义同步[J];计算机仿真;2012年05期
7 张永东,刘永清,刘树堂;研究混沌系统广义同步问题的一种解析方法[J];系统工程与电子技术;2000年11期
8 胡爱花;徐振源;李芳;;基于自适应控制的混沌系统的线性广义同步化[J];系统仿真学报;2006年04期
9 许碧荣;;基于非自治混沌系统广义同步的数字保密通信方案(英文)[J];量子电子学报;2011年06期
10 张小红;周勇飞;;异构超混沌广义同步系统构造及其电路仿真[J];计算机工程与科学;2014年03期
相关会议论文 前7条
1 闵乐泉;;连续系统和离散系统中广义同步研究[A];2009年第五届全国网络科学论坛论文集[C];2009年
2 刘曾荣;陈骏;罗吉贵;;用投影映射实现广义同步[A];第七届全国非线性动力学学术会议和第九届全国非线性振动学术会议论文集[C];2004年
3 李栋;郑志刚;;延时动力学系统广义同步的研究[A];全国复杂系统研究论坛论文集(二)[C];2005年
4 段玉波;王兴柱;周鸾杰;王瑞云;邵克勇;张轶淑;;基于非线性状态观测器的混沌广义同步控制[A];第二十九届中国控制会议论文集[C];2010年
5 秦卫阳;王红瑾;任兴民;;非线性恢复力耦合的振动系统同步与参数识别[A];第九届全国振动理论及应用学术会议论文集[C];2007年
6 方锦清;;非线性网络的动力学复杂性研究进展[A];全国复杂系统研究论坛论文集(一)[C];2005年
7 秦卫阳;王红瑾;任兴民;;非线性恢复力耦合的振动系统同步与参数识别[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年
相关博士学位论文 前7条
1 韩丹丹;混沌系统的鲁棒性研究及在图像加密中的应用[D];北京科技大学;2016年
2 过榴晓;混沌系统的广义同步及动态网络同步研究[D];江南大学;2009年
3 胡爱花;混沌同步的有关问题研究[D];江南大学;2010年
4 徐旭林;社会群体行为建模及其动力学分析[D];南开大学;2010年
5 张刚;混沌系统及复杂网络的同步研究[D];上海大学;2007年
6 张荣;复杂动力学网络与混沌系统的控制与同步[D];江南大学;2008年
7 张永平;分形的控制与应用[D];山东大学;2008年
相关硕士学位论文 前10条
1 李小娟;连续系统的广义同步[D];江南大学;2010年
2 丁建旭;混沌广义同步与控制[D];江南大学;2012年
3 朱泽飞;一般异维混沌系统以及复杂网络的有限时间同步[D];武汉科技大学;2015年
4 王兵;一类混沌系统的混沌广义同步探讨[D];江南大学;2009年
5 王雅琴;典型混沌系统广义同步与相同步方案的研究[D];大连理工大学;2009年
6 刘华艳;耦合混沌系统广义同步研究[D];郑州大学;2010年
7 陈娟;广义同步的复杂性研究[D];江南大学;2011年
8 谢青春;复杂动态网络广义同步[D];江南大学;2010年
9 商艳敏;二阶延迟混沌系统广义同步的电路实验研究[D];东北师范大学;2011年
10 高亚飞;光滑混沌耦合动力系统同步类型机理及其广义同步[D];郑州大学;2011年
,本文编号:2140697
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2140697.html