主题事件挖掘及动态演化分析研究
[Abstract]:Thematic event mining and evolutionary analysis is a structured form of events that people are interested in, extracting key information from events, such as time, place, and character, and sorting out and analyzing the relationship and development situation between events, so that the participants can understand events more clearly and quickly. Mining mainly includes time series analysis, information retrieval, automatic abstracting, topic detection and tracking, event detection, burst detection, anomaly detection and so on. Early basic work needs data acquisition, that is, to obtain related data of events and to carry out structured or semi-structured. This paper will study from sentence to text, and then to a number of chapters. The object of processing is subject oriented events. The main task is to understand the theme events deeply, that is, thematic event extraction and event analysis oriented to multiple documents. Event extraction includes sentence or phrase oriented event information identification, including time, ground point, character, shallow semantic analysis, etc.; document oriented events. Information recognition mainly includes time, key actions, locations, characters, and information fusion of subject events oriented to multiple documents. Event analysis includes dynamic evolution analysis of subtopics, character influence analysis and anomaly detection. This paper covers four key points for thematic event mining and focuses on different research issues. 1) study the information extraction and timing characteristics of subject events. The simple sentence based event argument does not reflect the occurrence of thematic events. This study takes thematic events as the research object, and the action meaning meta events are the necessary single positions for the theme events, including the event extraction within the sentence scope, and the text in the text. In this paper, a time recognition model for thematic events is proposed in this paper, which transforms the time recognition of the sentence or phrase into the time recognition for the text, thus identifying the time of the subject event fragment. The model uses the reference time dynamic selection mechanism to standardize the time expression. There is a certain correspondence between the event elements and the elements of the verbs dominated by the verb, so in this study, the event extraction and the shallow semantic analysis are combined to correspond the event elements to the semantic role tagging, and the performance of the time recognition of the subject pieces, which are based on the pure keyword or the static reference time mechanism, is improved. (2) based on the momentum. This study will combine the elements of the event and the idea of sudden detection to study the influence of the characters in the course of the development of the whole event. The physical model is used to define and construct the dynamic character of the characters' influence, combining the social elements of the characters, not only by the rate of arrival. By using stock analysis indicators to characterize and analyze the momentum characteristics of people's influence, the combination of several Moving Average Convergence Divergence (MACD) technical indicators is used to avoid a high index and no sudden situation. In order to analyze the factors in the event and the participation of these elements in the development process of the theme events. (3) study the application of dynamic incremental strategy in the subtopic evolution analysis of the theme events. Dynamic tracking of knowledge topics. These topics may be independent topics, or may not be the description of the same event. This study is based on the characteristics of the subtopic evolution as a dynamic data stream, combined with the Single-Pass clustering method, both ideas and dynamic increments, for the detection and tracking of subtopics. According to the timing and dynamics of subtopics, the algorithm is analyzed in terms of threshold selection, similarity smoothness and time factors. (4) the problem of anomaly detection in the synergistic effect of statistical theory and fuzzy set theory is studied. Anomaly detection is also a kind of time series analysis, which takes into account the data The time sequence and dynamics of flow. Outliers are data which are significantly different from other data. Some outliers can be considered noise, and some are key information. For example, the exception point in the event development often reveals the critical period or turning point of the event. Anomaly detection technology usually requires a large number of tagged data. The statistical distribution characteristics of the data are unknown, and many parameters are needed, the control limit is difficult to determine and the fuzziness of the data itself. In this paper, based on the theory of statistical process control, this paper defines the concept of abnormal points and abnormality. According to the characteristics of the anomaly point itself, the combination of the fuzzy theory and the statistical method is combined. The technique performs the anomaly detection in the event. This method can not require any annotation data and is independent of the distribution. The parameters are determined by the enhanced fuzzification process and the optimization model.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.1
【相似文献】
相关期刊论文 前10条
1 周道林;;论过程感知信息系统中过程的动态演化[J];信息系统工程;2012年09期
2 赵伦;肖镞;;计算机软件动态演化技术概述[J];计算机光盘软件与应用;2013年13期
3 邓磊;吴健;胡正国;;一种嵌入式系统的动态演化方法[J];计算机应用;2007年11期
4 王爱萍;闾国年;黄家柱;郑新奇;林冰仙;;面向动态演化的城镇地价评估系统[J];计算机工程;2008年14期
5 李玉龙;李长云;;软件动态演化技术[J];计算机技术与发展;2008年09期
6 陈春华;马勤;陈雅莉;;基于动态演化的水文数据转贮技术研究与应用[J];水文;2011年S1期
7 贾向阳;应时;张韬;余晓峰;;一个支持业务过程动态演化的可反射框架[J];计算机工程;2006年10期
8 陈洪龙;李仁发;;面向服务对象的动态演化机制[J];计算机应用;2010年07期
9 赖格英,于革;古气候动力模拟动态演化的可视化研究与实现[J];计算机应用;2004年06期
10 沈思;郑昌兴;;基于动态演化模式的词表组织设计与实现[J];计算机光盘软件与应用;2013年24期
相关会议论文 前5条
1 赵会群;孙晶;魏莹;王文文;;服务体系结构的动态演化方法研究[A];CCF NCSC 2011——第二届中国计算机学会服务计算学术会议论文集[C];2011年
2 王弟海;龚六堂;;持续性不平等的原因及其动态演化综述[A];经济学(季刊)第7卷第2期[C];2008年
3 张涵信;沈孟育;;基于动态演化的最优化方法[A];近代空气动力学研讨会论文集[C];2005年
4 郑江淮;张晓云;;从国际代工到国际研发:价值链攀升的动态演化[A];社会主义经济理论研究集萃——从经济大国走向经济强国的战略思维(2011)[C];2011年
5 高莹莹;何枫;沈孟育;;非定常动态演化伴随方法在翼型气动设计中的应用[A];北京力学会第19届学术年会论文集[C];2013年
相关博士学位论文 前6条
1 李风环;主题事件挖掘及动态演化分析研究[D];哈尔滨工业大学;2016年
2 苗又山;大规模动态演化图的存储与分析系统研究[D];中国科学技术大学;2015年
3 姚毅;中国城乡贫困动态演化的理论与实证研究[D];西南财经大学;2010年
4 陈洪龙;面向对象—构件的软件动态演化技术研究[D];湖南大学;2011年
5 谢仲文;一种需求驱动、以体系结构为视图的面向软件动态演化的模型与方法[D];云南大学;2012年
6 赵旭剑;中文新闻话题动态演化及其关键技术研究[D];中国科学技术大学;2012年
相关硕士学位论文 前10条
1 王华;软件动态演化良性化建模与评估方法研究[D];湖南工业大学;2015年
2 魏秋彦;环境变化对软件动态演化的作用机理研究[D];湖南工业大学;2015年
3 薛彤;微博舆情动态演化特性及多主体仿真研究[D];南京航空航天大学;2015年
4 蒋旭东;面向动态演化的软件行为相关性问题分析研究[D];云南大学;2016年
5 江晶;基于竞争优势动态演化的高新技术企业可持续发展研究[D];武汉理工大学;2007年
6 杨轶波;我国大学衍生企业的动态演化分析[D];上海交通大学;2010年
7 张丹;基于SCA的动态演化模型SO-DSAM的研究与应用[D];西北大学;2011年
8 曾惠芳;基于高阶挖掘的动态演化规律研究[D];暨南大学;2011年
9 苏卫华;复杂网络社区发现及其动态演化研究[D];太原理工大学;2010年
10 仇书礼;面向服务的构件动态演化方法及其实现[D];哈尔滨工业大学;2011年
,本文编号:2144370
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2144370.html