数字滤波器参数化设计与高效实现研究
[Abstract]:As an interdisciplinary subject of science and engineering, digital signal processing is one of the most important cornerstones of the development of modern science and technology, and has been widely used in various fields of scientific research and production practice. Fields. Based on the state space theory of systems, there are many equivalent implementation structures for a digital filter with a given transfer function. Infinite precision design of digital filters focuses on the efficiency of finding feasible solutions and the stability of the system. Finite precision design also considers the low complexity and the limited reduction of the implementation structure. On the other hand, digital filters can be implemented in two ways, with special emphasis on the high throughput of algorithms when implemented by computer software, and with more emphasis on the high speed and low cost of synthesis results when implemented by hardware methods such as special purpose or general purpose integrated circuits. The main work and achievements are as follows: 1. Based on the JSS junction structure, the IIR number digital filter parameterization method: The cost function of designing infinite impulse response-IIR digital filter is generally used. Because the JSS structure of an analog filter contains only 2N+1 parameters for a N-order filter and has l2-scaling property, a parametric method for designing IIR filters is proposed based on the JSS structure and generalized bilinear transform. The method is complete, compact and convex, and has the property of l2-scaling. This method can design stable IIR filters more efficiently, and has better performances such as passband fluctuation, stopband attenuation, group delay and so on. 2. Based on genetic algorithm, the discrete design of lattice structure parameters: the combination of molecular injection and molecular tapping The lattice filter structure has the degree of freedom and can optimize the FWL performance such as node signal power ratio. The structure has only 2N+1 multiplier, and the parameter sensitivity is very low. It is especially suitable for the discrete design of IIR filter. In this paper, the genetic algorithm based on Gray code is used to solve the nonlinear optimization problem. The global optimization is used in the low-order filter, and the step-by-step optimization is used in the high-order filter. The contradiction between efficiency and performance in the discretization of IIR filter parameters is effectively solved, which is conducive to the practicality of IIR filter. 3. All-pass digital filter with parallel computation is used. Structure: Input balancing implements low parametric sensitivity and low rounding noise gain. Based on a class of Heisenberg implementations and normalized lattice structures, two types of all-pass digital filters for parallel computation are proposed. Parallel processing principle is discussed based on state space analysis method, and rounding noise gain expression is derived. For a N-order all-pass filter, the rounding noise gain is only 4N. The proposed architecture is more suitable for low-complexity and high-throughput digital systems because of its parallel processing capability. 4. Low-cost FIR digital filter implementation based on integrated circuits: subspace technology uses finite impulse response-FI R) Subitem sharing among the coefficients of digital filters can effectively reduce the number of adders for implementation; extrapolation compensation technique can effectively reduce the complexity of multiplication of multiple constant coefficients by utilizing the quasi-periodic characteristics of impulse response of FIR filters. Based on these two techniques, FIR filters are programmed on integrated circuits using hardware description language. Combining with the integrated circuit characteristics, the implementation method of high-speed and low-cost FIR filter is obtained by improving the hardware structure, which is helpful to further promote the practicality of FIR filter.
【学位授予单位】:浙江工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN713.7
【相似文献】
相关期刊论文 前10条
1 蔡毓,刘贵忠,侯兴松,王海龙;基于多分辨框架下实现数字滤波器[J];广西科学;2001年03期
2 兰琴;;微机保护中数字滤波器讲授方法探讨[J];重庆电力高等专科学校学报;2001年03期
3 杨益新,孙超;一种改进的FIR数字滤波器自适应设计方法[J];西北工业大学学报;2002年04期
4 Ron Pearson;;以比例不变非线性数字滤波器有效净化数据[J];电子设计技术;2002年10期
5 陈佳敏 ,胡俊;FIR数字滤波器在数字化仿型数据处理中的应用[J];精密制造与自动化;2005年03期
6 马洁;董金明;;IIR数字滤波器在定点DSP上的实现[J];声学与电子工程;2006年02期
7 杨永昌;李晨辉;王凯;;FIR数字滤波器的设计方法[J];桂林航天工业高等专科学校学报;2006年03期
8 雷能芳;;FIR数字滤波器的一种快速算法[J];现代电子技术;2006年21期
9 马宝山;朱义胜;;一种用于基因预测的FIR数字滤波器[J];电子学报;2007年09期
10 杨志飞;;基于软件Measurement Studio的数字滤波器的设计与实现[J];电气传动自动化;2007年05期
相关会议论文 前10条
1 刘焕淋;何方白;张云麟;庄陵;;FIR数字滤波器的设计与实现[A];第九届全国青年通信学术会议论文集[C];2004年
2 贾再一;赖晓平;陈仕兵;;设计2D-FIR数字滤波器的随机抽样递推最小二乘法[A];第九届全国信号处理学术年会(CCSP-99)论文集[C];1999年
3 黄建军;谢维信;;一种直角可分的二维最佳数字滤波器[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年
4 张培珍;;FIR数字滤波器特性分析与组合窗设计法教学方案[A];2011高等职业教育电子信息类专业学术暨教学研讨会论文集[C];2011年
5 夏惊雷;范建华;王庭昌;;高阶FIR数字滤波器的优化设计与实现[A];2005通信理论与技术新进展——第十届全国青年通信学术会议论文集[C];2005年
6 黄凯明;王兆明;林发炳;;连续平衡数字滤波器参数研究[A];2006中国控制与决策学术年会论文集[C];2006年
7 张涛;蒋静坪;张项安;;应用于电力系统保护的FIR数字滤波器的设计研究[A];2006中国电力系统保护与控制学术研讨会论文集[C];2006年
8 陈s,
本文编号:2194890
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2194890.html