宽带高速信号检测与频域测量技术研究
[Abstract]:Electronic support is a special military reconnaissance means to obtain enemy's military information, which plays an extremely important role in the field of radar countermeasures. With the rapid development of radar technology, the number of radar continues to grow. In modern electronic warfare environment, radar signals become increasingly dense and the forms of signals become more complex. With the development of signal to broadband and high frequency, the traditional signal processing methods are limited by the electronic bottleneck of the sampled devices, which will be difficult to meet the future battlefield requirements. In recent years, scholars at home and abroad have done some research on the high-speed sampling of signals. Compressive sensing theory and microwave photonics have attracted wide attention in reducing the sampling rate of the system. Quantity compressed sampling data completes the task of signal detection and parameter estimation; microwave photon technology combines photon technology with microwave technology to realize wideband, low loss, anti-electromagnetic interference microwave signal processing system. Odulated, LFM) signal detection and parameter estimation performance and the application of optical sampling technology in the instantaneous frequency measurement of high frequency microwave signal are analyzed and studied. Some solutions are proposed. The main contributions and research contents of this paper include: 1. LFM signal detection algorithm based on waveform matching dictionary under compressed sensing framework. In this paper, a novel LFM signal detection algorithm based on Fractional Fourier Transform (FrFT) dictionary is proposed to solve the problem that the detection performance is greatly affected by Gaussian white noise. Transform the dictionary, and then use the orthogonal matching pursuit algorithm to reconstruct the coefficient vector of the signal in the fractional Fourier transform dictionary. Finally, detect and judge the coefficient vector to achieve the purpose of signal detection. The number of points and the lower SNR (Signal-to-Noise Ratio) can improve the probability of signal detection success. 2. In order to solve the problem that the performance of LFM signal detection algorithm based on fractional Fourier transform dictionary is seriously affected by narrowband interference signals, a morphological component analysis method is introduced and a Cascade-based LFM signal detection algorithm is proposed. Based on the principle of morphological component analysis, the algorithm constructs a fractional Fourier transform dictionary and a Fourier transform dictionary, cascades them into a redundant dictionary, and reconstructs the coefficient vector of the signal in the cascaded dictionary by orthogonal matching pursuit algorithm, and then separates the signal from the interference. It is shown that the algorithm can effectively suppress narrowband interference signals. Compared with the algorithm based on fractional Fourier dictionary, the algorithm can obtain higher probability of signal detection success in the presence of narrowband interference signals. In order to estimate the parameters of LFM signals seriously affected by Gaussian white noise and strong narrowband interference signals, a two-search strategy based on fractional Fourier transform dictionary is proposed. The optimal fractional Fourier transform order of the LFM signal is obtained to estimate the frequency modulation slope and the initial frequency of the LFM signal. The experimental results show that the proposed algorithm can obtain a higher probability of success in signal parameter estimation with fewer compression sampling points and lower SNR than the algorithm based on the waveform matching dictionary. This paper presents an improved LFM signal parameter estimation algorithm based on two-search strategy of order Fourier transform dictionary. The algorithm takes advantage of the fact that LFM signal is sparse in time-frequency domain and fractional Fourier transform domain. First, the order of transformation is in time-frequency domain. The optimal fractional Fourier transform order of LFM signal is obtained by coarse search in frequency domain, and then the estimation of FM slope and initial frequency of LFM signal is obtained. Compared with the algorithm based on waveform matching dictionary, the algorithm can also obtain higher probability of signal parameter estimation success under the same SNR and compressed sampling points. 5. An instantaneous frequency measurement algorithm of high frequency microwave signal based on microwave photonics is studied. An instantaneous frequency measurement algorithm for high frequency microwave signals based on optical sampling is proposed, which uses optical intensity modulator to modulate high frequency microwave signals to low repetition rate sampled optical pulses to achieve optical sampling of high frequency microwave signals. Combining FFT with Chirp-z Transform (CZT), the frequency remainder generated under the condition of under-sampling is estimated accurately, and then the signal frequency is reconstructed by using the Chinese remainder theorem. The experimental results show that the algorithm can accurately measure the signal frequency in 39 GHz bandwidth.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN957.51
【相似文献】
相关期刊论文 前10条
1 张隆阁;;一类参数不确定混沌系统的分数阶自适应同步[J];中国科技信息;2009年15期
2 张隆阁;;一类混沌系统的分数阶广义同步[J];自动化博览;2009年07期
3 林浩;罗懋康;;基于分数阶微(积)分的一种降噪和白化方法[J];信息通信;2012年01期
4 刘艳芹;;一类分数阶非线性振子方程的特性研究[J];计算机工程与应用;2012年16期
5 邝钰;吴润;李岩;;分数阶控制器实现方法研究[J];航天控制;2012年04期
6 沈学举;单透镜实现非精确分数阶付里叶变换[J];光电子·激光;1999年03期
7 赵义正,杨景曙;离散分数阶Fourier变换的实现及有限字长效应分析[J];合肥工业大学学报(自然科学版);2005年03期
8 刘艳芹;;一类分数阶种群扩散模型解的研究[J];计算机工程与应用;2012年24期
9 邓兵,陶然,齐林,刘锋;分数阶Fourier变换与时频滤波[J];系统工程与电子技术;2004年10期
10 陈光明;陶华;蒲继雄;;分数阶无衍射光束的实验研究[J];量子电子学报;2011年05期
相关会议论文 前10条
1 李西成;;经皮吸收的分数阶药物动力学模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 谢勇;;分数阶模型神经元的动力学行为及其同步[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年
3 张硕;于永光;王亚;;带有时滞和随机扰动的不确定分数阶混沌系统准同步[A];中国力学大会——2013论文摘要集[C];2013年
4 李常品;;分数阶动力学的若干关键问题及研究进展[A];中国力学大会——2013论文摘要集[C];2013年
5 李常品;;分数阶动力学简介[A];第三届海峡两岸动力学、振动与控制学术会议论文摘要集[C];2013年
6 蒋晓芸;徐明瑜;;时间依靠分数阶Schr銉dinger方程中的可动边界问题[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 王花;;分数阶混沌系统的同步在图像加密中的应用[A];第二届全国随机动力学学术会议摘要集与会议议程[C];2013年
8 王在华;;分数阶动力系统的若干问题[A];第三届全国动力学与控制青年学者研讨会论文摘要集[C];2009年
9 张硕;于永光;王莎;;带有时滞和随机扰动的分数阶混沌系统同步[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
10 李西成;;一个具有糊状区的分数阶可动边界问题的相似解研究[A];中国力学大会——2013论文摘要集[C];2013年
相关博士学位论文 前10条
1 陈善镇;两类空间分数阶偏微分方程模型有限差分逼近的若干研究[D];山东大学;2015年
2 任永强;油藏与二氧化碳埋存问题的数值模拟与不确定性量化分析以及分数阶微分方程的数值方法[D];山东大学;2015年
3 蒋敏;分数阶微分方程理论分析与应用问题的研究[D];电子科技大学;2015年
4 卜红霞;基于分数阶傅里叶域稀疏表征的CS-SAR成像理论与算法研究[D];北京理工大学;2015年
5 杨变霞;分数阶Laplace算子的谱理论及其在微分方程中的应用[D];兰州大学;2015年
6 邵晶;几类微分系统的定性理论及其应用[D];曲阜师范大学;2015年
7 方益;分数阶Yamabe问题的一些紧性结果[D];中国科学技术大学;2015年
8 王国涛;几类分数阶非线性微分方程解的存在理论及应用[D];西安电子科技大学;2014年
9 陈明华;分数阶微分方程的高阶算法及理论分析[D];兰州大学;2015年
10 孟伟;基于分数阶拓展算子的灰色预测模型[D];南京航空航天大学;2015年
相关硕士学位论文 前10条
1 楚彩虹;单载波分数阶傅里叶域均衡系统及关键技术研究[D];郑州大学;2015年
2 张欣欣;Caputo型分数阶神经网络的稳定性分析[D];燕山大学;2015年
3 杨晶;带分数阶边界条件的分数阶微分方程边值问题[D];天津财经大学;2015年
4 王琳莉;分数阶Hamilton系统的运动方程和对称性理论研究[D];浙江理工大学;2016年
5 陈秀凯;基于移位Jacobi多项式求解三类变分数阶非线性微积分方程[D];燕山大学;2015年
6 纪翠翠;时间分数阶偏微分方程高阶数值解法[D];东南大学;2015年
7 董菁菁;分数阶长短波方程的长时间行为[D];鲁东大学;2016年
8 崔晓玉;几类分数阶扩散方程中线性方程组的预处理迭代解法[D];华东师范大学;2016年
9 吴亚运;几类分数阶微分方程解的存在性研究[D];安徽大学;2016年
10 曹玉童;两类分数阶差分方程解对初值的连续依赖性[D];安徽大学;2016年
,本文编号:2216709
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2216709.html