基于空时关系学习的运动检测和目标跟踪研究
[Abstract]:Intelligent city is an important strategy for a country to solve the current urban development problems, increase new economic growth points, and seize the commanding heights of future science and technology. Intelligent traffic is one of its core construction contents. Two core problems of detection and target tracking are explored technically. The research results are applied to the intelligent electronic police system of intelligent transportation, which improves the adaptability of the electronic police system to the environment. The main factors of complex scenes are analyzed. The mechanism of unfavorable effects of illumination changes, background disturbance, similar targets, camera motion and other factors on moving target detection is analyzed in depth. The problem of long-term tracking of unknown targets in complex scenes includes: object occlusion, object appearance change, object scale change and short-term disappearance of the target. In the case of target feature missing or incomplete due to the change of target appearance, the available information is analyzed and compared. A representative target tracking algorithm is proposed to deal with the change of target scale and the short-term disappearance of target. Finally, the above research results are applied to the intelligent electronic police system to solve the technical difficulties encountered in the development process. The main research results and contributions of this paper are as follows: 1. The main components of complex scenes in video object detection are analyzed, and a scale-invariant approach is proposed. Local ternary mode (SILTP) video image background modeling algorithm. According to the different effects of complex scenes on different levels of video image sequences, the background modeling algorithm is designed using three levels of information: frame level, image block level and pixel level. The algorithm combines the advantages of image frame, image block and image pixel to deal with complex scenes. At the frame level, the global gray mean is used to deal with the sudden change of scene brightness; at the image block level, the SILTP texture image is used to model the background based on the image block to quickly locate the outline of the foreground target; at the pixel level, the precise boundary of the foreground target is detected by the ViBe-like algorithm. Confronted with the difficulty of video object detection, i.e. the elimination of object self-projection, a shadow illumination model is constructed, and the types and causes of object shadows are analyzed. The weak sensitivity of illumination changes eliminates the target projection caused by indoor weak illumination; then, a hue model is constructed in HSV color space to eliminate the target projection caused by outdoor illumination by using the intrinsic characteristics of object color; finally, in order to enhance the elimination effect of target projection and improve the processing speed, the local correlation of pixel changes is used. MofV factor is designed. The performance of the algorithm is verified by the standard video set CDM'14. 3. A robust motion detection method DMSTAB is proposed in HSV color space. In HSV color space, the local intensity difference of pixels is generated by K-means clustering, and the local intensity difference of pixels is generated by spatial-temporal correlation of pixel sets. Then, the working principle of Vibe background subtraction algorithm is deeply analyzed, and a bi-correlation background model based on AdaBoost-Like method is proposed to detect moving objects quickly and accurately and eliminate moving objects effectively. Projection. The performance of this method is validated by a variety of complex scenes on the standard video set CDM'14. 4. A space-time confidence relation based moving object detection method STR is proposed. In this paper, a space-time confidence relation is proposed, and a relatively stable relation between pixels and their neighborhood pixels is defined. Then, a fast kernel density estimation method is used to model the temporal variation of spatial relationship. In addition, the corresponding weights are assigned to the model according to the dispersion of spatial relationship values. Finally, the pixels are synthesized by the probability based on weights. The algorithm is validated in typical complex scenes of standard video set CDM'14. 5. A new method LST is proposed, which combines the space-time association information of the target and its environment with the target's own characteristics to track unknown targets for a long time and stably. The algorithm consists of three functional modules: detection, tracking and learning. The detection module cascades through several classifiers, detects the target in the global scope according to the basic image features of the target itself, handles the transient disappearance and recurrence of the target, changes in target scale and environment. The tracking module uses the space-time confidence relationship between the target and its surroundings to track the target quickly through local search, deal with the occlusion of the target and the change of the target scale; the algorithm evaluates the tracking and detection effect by maintaining a set of online templates composed of positive samples in the running process. The learning module adjusts the tracking and detection results according to the evaluation results. The LST algorithm is compared with the mainstream video target tracking algorithm on several datasets which are challenging to the tracking algorithm (severe occlusion, drastic illumination changes, attitude and scale changes, non-rigid deformation, complex background, motion blur and similar targets). ST algorithm shows a good tracking effect. 6. In the face of the technical bottleneck encountered in the development of the electronic police system, the core technology of moving target detection algorithm STR and target tracking algorithm LST is applied to the intelligent electronic police system. The vehicle detection and tracking performance of the intelligent electronic police system are improved, and further acts on it. License plate recognition and vehicle violation judgment have improved the overall performance of the electronic police system.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 张涛;张桂林;;运动检测中的背景建立和更新[J];计算机与数字工程;2007年02期
2 刘振宇;周莉;陈杰;;一种基于运动检测的码率控制算法[J];科学技术与工程;2010年20期
3 闫石;白振兴;代忠;;对传统运动检测算法改进的研究[J];现代电子技术;2007年06期
4 顾敏剑;;基于运动检测的远程图像采集系统的设计与实现[J];计算机与数字工程;2012年08期
5 强俊;周鸣争;;基于正交Gaussian-Hermite矩的运动检测在去隔行中的研究[J];安徽工程大学学报;2013年02期
6 胡俊,苏祥芳,刘立海,沈芸,管鲍,王延平;图像序列运动检测算法的研究及其应用[J];武汉大学学报(自然科学版);2000年05期
7 周西汉,刘勃,周荷琴;一种基于对称差分和背景消减的运动检测方法[J];计算机仿真;2005年04期
8 蓝照华;傅文利;赵进创;陈涛;;边缘面积值绝对差数累积运动检测算法[J];微计算机信息;2006年33期
9 张凯;;视频运动检测算法的研究和分析[J];辽宁工学院学报;2007年01期
10 侯叶;郭宝龙;;基于图切割的人体运动检测[J];光电子.激光;2007年06期
相关会议论文 前8条
1 郭锐;;运动检测报警在监控系统中的设计与实现[A];科学发展与社会责任(A卷)——第五届沈阳科学学术年会文集[C];2008年
2 唐晓丹;苗振江;;视频监控系统中人的运动检测方法研究[A];第十三届全国信号处理学术年会(CCSP-2007)论文集[C];2007年
3 李东光;殷俊;房慧敏;;基于生物复眼结构的视觉运动检测研究[A];2004全国光学与光电子学学术研讨会、2005全国光学与光电子学学术研讨会、广西光学学会成立20周年年会论文集[C];2005年
4 傅松寅;蒋刚毅;郁梅;;一种基于像素变化检测的自适应实时运动检测系统[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
5 陈威宇;孟利民;;视频图像序列混合运动检测方法[A];2008年中国高校通信类院系学术研讨会论文集(上册)[C];2009年
6 徐萧萧;陈宗海;;基于视觉信息的目标检测与跟踪技术现状与趋势[A];2007系统仿真技术及其应用学术会议论文集[C];2007年
7 马强;罗喜伶;;空基交通监视系统中的运动目标检测方法研究[A];2008第四届中国智能交通年会论文集[C];2008年
8 辛颖;吴强;孙光民;徐颖;姚明;;智能化公交系统的客流跟踪计数综述[A];2008通信理论与技术新进展——第十三届全国青年通信学术会议论文集(上)[C];2008年
相关博士学位论文 前4条
1 范志辉;基于空时关系学习的运动检测和目标跟踪研究[D];西安电子科技大学;2016年
2 李宏友;基于视频的目标检测与跟踪方法研究[D];重庆大学;2009年
3 沈宇键;变参数图像回归处理方法的研究[D];中国科学院长春光学精密机械与物理研究所;2000年
4 康锋;基于视觉特征的早期农林火灾检测方法的基础研究[D];浙江大学;2010年
相关硕士学位论文 前10条
1 李运崇;基于形状识别的运动物体检测[D];郑州大学;2015年
2 樊建霞;家庭环境下的人体跟踪与定位[D];山东大学;2015年
3 余传桂;网络化数字健身系统设计与实现[D];南昌大学;2015年
4 吴卫东;基于视觉注意机制的视频显著目标检测技术研究[D];北京工业大学;2015年
5 周文彬;去隔行算法的FPGA实现[D];西安电子科技大学;2014年
6 乔鹏;基于视频的车辆运动检测和流量统计算法研究[D];国防科学技术大学;2013年
7 李冰冰;面向学生人群的运动检测算法研究及软件开发[D];浙江工业大学;2015年
8 卫伟;基于FPGA的2D转3D实时视频转换技术的研究及实现[D];合肥工业大学;2015年
9 李飞;智能视频监控系统中运动检测算法的研究[D];重庆大学;2015年
10 白金辉;面向能量回收的MIMU人体运动检测识别方法研究及系统实现[D];东南大学;2015年
,本文编号:2221594
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2221594.html