基于图像处理技术的自动调焦方法研究
[Abstract]:Image is an important carrier of information transmission. How to obtain clear and high-quality images has always been the direction and goal of people's exploration. Image quality is directly related to the subsequent image processing and application. Auto-focusing technology based on image processing is different from traditional focusing technology, which only relies on the acquired image information and does not require additional photoelectric detection equipment. Focusing process based on depth of focus method is a closed-loop control process, which integrates light, machine and electricity. It mainly includes three important links: the construction of focusing window, the selection of focusing evaluation function, and the feedback control of search algorithm for focusing motor. Based on the development status of focusing technology, a series of researches are carried out aiming at these three important links and combining with practical application. Firstly, the defocusing model of optical imaging system is established, the point spread function and optical transfer function under defocusing state are introduced, and the auto-focusing technology is established by analyzing the essential reasons of blurring image caused by defocusing. Secondly, focusing evaluation function is studied deeply. The selection of focusing evaluation algorithm is an important step in the focusing process. Defocusing will cause the loss of high-frequency components of the image, which will blur the edges and details of the image and degrade the image quality in the spatial domain. Fourier transform based image power spectrum has the characteristics of scene invariance and is widely used. Wavelet analysis overcomes the shortcomings of single Fourier resolution and has the characteristics of multi-resolution analysis. Wavelet power spectrum function is a power spectrum function based on Fourier transform. In order to verify the validity and universality of the proposed method, some experiments are carried out on LIVE database. At the same time, according to the characteristics of large-scale optical measurement equipment, a new method is proposed in this paper. The improved SML intelligibility evaluation function based on adaptive threshold segmentation adds two diagonal gradient values to the original SML function and takes the maximum value as the result of the point space filtering. The algorithm can effectively overcome the background noise and the influence of equipment jitter caused by atmospheric turbulence, and has high stability and sensitivity. Thirdly, the construction of the focusing window is studied. The influence of the size and position of the focusing window on the focusing evaluation curve is discussed. Due to the uncertainty of the position and size of the object observed by the optical measuring equipment, too large or too small of the window can easily cause the interference of background information or the loss of the object. Based on the limitation of the method, a window building method based on multi-scale pulse cosine transform is proposed. This method simulates the human visual attention mechanism and extracts the region of interest (ROI) of the image. The search strategy of the dynamic focusing system is the final realization of the focusing process.This paper improves the hill-climbing method which is commonly used and has high feasibility.The improved hill-climbing method is used as the basic search algorithm of the focusing system,and the wavelet power spectrum value of the image is used as the auxiliary means to judge the direction of the focusing search. Finally, according to the proposed focusing strategy, an embedded auto-focusing system based on DSP chip TMS320C6678 and Virtex-II series XC2V3000 is designed. A large number of experiments have been carried out on focusing accuracy, stability and real-time. The experimental results show that the auto-focusing method proposed in this paper is feasible and has high engineering application value.
【学位授予单位】:中国科学院研究生院(长春光学精密机械与物理研究所)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 原育凯;光学系统的自动调焦方法[J];红外;2004年06期
2 杨再华,李玉和,李庆祥,郭阳宽;一种粗精结合的图像反馈自动调焦方法[J];计算机工程与设计;2005年09期
3 胡涛;陈世哲;刘国栋;浦昭邦;;大范围自动调焦快速搜索算法[J];光电子·激光;2006年04期
4 包琳;李文虎;李刚;;红外系统自动调焦技术的研究与工程实现[J];激光与红外;2012年10期
5 ;可拍照的太阳镜[J];红外技术;1990年06期
6 安德烈;;自动调焦显微镜装置与日本同类产品比较有独特优点[J];半导体光电;1992年03期
7 贾晓飞;李宜斌;陈德智;许家新;;非制冷红外热像仪的快速自动调焦算法设计[J];激光与红外;2009年06期
8 姚源;谭广通;李长春;;基于图像处理的自动调焦的分析[J];科技信息;2009年19期
9 李明明;王新赛;李坚;张勇;;红外成像自动调焦中动目标对焦窗口选择研究[J];红外;2010年06期
10 刘军;冯艳君;刘伟军;王天然;;基因芯片荧光靶点显微成像自动调焦控制[J];仪表技术与传感器;2011年05期
相关会议论文 前3条
1 梁敏华;曹永刚;;图像法自动调焦的动态调焦区域设计[A];第七届全国信息获取与处理学术会议论文集[C];2009年
2 张文成;毛清龙;唐崇丹;黄作明;;煤岩反射率自动测定和有机组分测定系统的研究[A];中国金属学会第一届青年学术年会论文集[C];2002年
3 李宝柱;李淳;;基于VC++和Matlab混合编程的自动调焦技术研究[A];第十届全国光电技术学术交流会论文集[C];2012年
相关重要报纸文章 前3条
1 龙云怒;模仿人眼自动调焦距的液体镜头问世[N];医药经济报;2006年
2 willin;看图说背景虚化[N];中国电脑教育报;2004年
3 willin;菜鸟玩DC心得[N];中国电脑教育报;2004年
相关博士学位论文 前9条
1 路朋罗;基于图像处理技术的自动调焦方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2016年
2 王冠军;基于图像处理的光电测量设备自动调焦方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2016年
3 徐新;数字图像自动调焦技术及其在低光照环境下的应用研究[D];上海交通大学;2012年
4 于秋水;基于图像处理方法的光学瞄具自动调焦技术研究[D];长春理工大学;2011年
5 胡涛;机器视觉中的自动调焦及形貌恢复技术研究[D];哈尔滨工业大学;2007年
6 刘雪超;基于数字图像处理的自动调焦技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2014年
7 黄德天;基于图像技术的自动调焦方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2013年
8 林兆华;基于图像处理自动调焦技术在经纬仪中应用的研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2012年
9 王健;基于图像处理的自动调焦技术研究[D];中国科学院研究生院(光电技术研究所);2013年
相关硕士学位论文 前10条
1 郭晶晶;太阳望远镜的高精度自动导行和自动调焦方法的研究[D];昆明理工大学;2015年
2 赵志彬;机载光电平台可见光摄像机自动调焦技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2010年
3 李成;视频监控系统中自动调焦技术的研究[D];长沙理工大学;2009年
4 吴小翠;全自动尿沉渣检验仪自动调焦方法研究[D];湖南大学;2010年
5 姚s,
本文编号:2222672
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2222672.html