基于信道响应的室内设备无关被动人体定位研究
[Abstract]:With the rapid development of the Internet of Things, wireless location has become one of the emerging technologies, which can help intelligent systems to implement location-based intelligent services. Compared with traditional active location, the new wireless device-independent passive location can be used to locate users without any related electronic devices and to locate, even identify users. Recognition, the technology can be widely used in factories, home safety protection, equipment protection, personnel management and other fields. Because of its coarse-grained nature, the traditional wireless signal strength in indoor environment can not accurately perceive the presence of human body under the influence of indoor multipath effect, resulting in indoor equipment independent passive positioning. Nowadays, WLAN technology is developing rapidly. The OFDM technology used in IEEE802.11 a/g/n protocol provides fine-grained channel response information at carrier level for wireless location. Channel response includes channel state information at multi-carrier level and can describe indoor environment. Multipath propagation characteristics provide a new opportunity for the development of fine-grained and high-precision indoor device-independent passive positioning. Currently, the research on channel response-based device-independent passive positioning is still in its infancy in the world, and a large number of basic problems remain unsolved, including the use of multi-carrier channel state information for indoor equipment. Efficiency, stability and efficiency in the field of independent passive location. This paper explores the use of fine-grained multi-carrier channel state information to obtain advanced indoor device-independent passive location technology, and promotes the development of wireless indoor device-independent passive location technology in China. In order to reduce the cost of equipment-independent passive human body detection and improve the universal applicability of equipment-independent passive human body detection, a large number of comparative experiments are carried out in this paper, and amplitude response information is proposed to quantify the mobile of wireless link to human body. A lightweight device-independent passive human body detection model is constructed to realize adaptive device-independent passive human body detection and reduce the cost of field survey. Secondly, aiming at the low perception ability of amplitude response to indoor slow motion, a phase response-free device-independent passive human motion detection is proposed. After linear transformation of the original random phase information in the network card, the system extracts the available stable phase information. This paper develops a lightweight real-time device-independent passive human detection model based on time-domain phase variation coefficients, which can reduce the system survey overhead and improve the universality of device-independent passive human detection. Thirdly, the amplitude response information is used to quantify the radio perception ability of the receiver, which helps to select the position of the receiver with high perception. The fine-grained device-independent passive human body localization model based on S classification principle can improve the range and accuracy of indoor wireless device-independent passive localization and reduce the number of blind spots in the monitoring area. Finally, based on the difference and correlation of channel state information at different frequencies, a high-precision indoor device-independent passive location model is proposed. This paper makes full use of the frequency selective fading characteristic of channel response. Two novel passive human localization algorithms, weighted Bayesian localization and maximum similarity matrix localization, are studied under the condition of single link. Supervised learning technique is used to further improve the accuracy of passive human localization. Mean location error also reflects the stability and efficiency of channel response in device independent passive location.
【学位授予单位】:哈尔滨工程大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN92
【相似文献】
相关期刊论文 前10条
1 归琳,韩雁,邹志永,吴禀圣,仇佩亮;快速信道响应估计算法及其应用[J];电路与系统学报;2001年04期
2 张福新,季建峰,楼建东;利用训练序列进行无线信道响应的低价估计[J];微计算机信息;2005年05期
3 杨晓东,牟松会,杨日杰,赵俊渭;快速实现盲序列估计的一种新算法[J];电子科学学刊;2000年01期
4 黄勇;;基于信道响应算法的OFDM多径同步技术[J];通信技术;2013年11期
5 高猛;崔桐;任晓亚;赵守俊;;LOFDM系统信道响应和时延扩展联合估计[J];指挥信息系统与技术;2013年05期
6 李金磊;李为;熊春林;王德刚;魏急波;;一种基于大数逻辑判决和信道响应的HARQ算法[J];信号处理;2011年09期
7 孙林;吴相林;罗松涛;周莉;张红艳;;基于人体检测的网络商品图像分类算法[J];微计算机信息;2010年29期
8 丁建浩;耿卫东;王毅刚;;基于多部位多示例学习的人体检测[J];模式识别与人工智能;2012年05期
9 王敏;赵娜娜;刘忠杰;黄榜;宋小波;朱擎飞;;视频中的人体检测算法[J];自动化博览;2013年02期
10 孙宏国;李天然;蒲宝明;张全发;王慧静;;复杂背景下人体检测算法[J];计算机系统应用;2013年04期
相关会议论文 前4条
1 孙庆杰;;基于颜色量化的人体检测[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
2 龚华;李继云;;运动人体检测算法比较研究[A];第十四届全国图象图形学学术会议论文集[C];2008年
3 顾爽;陈启军;;基于边缘类型比率特征的人体检测算法[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
4 陈亚菲;张宝昌;;基于L2-norm最小化的人体检测[A];第八届全国信息获取与处理学术会议论文集[C];2010年
相关重要报纸文章 前1条
1 成都 胥绍禹 编译;人体检测夜间自动照明灯[N];电子报;2007年
相关博士学位论文 前7条
1 宫良一;基于信道响应的室内设备无关被动人体定位研究[D];哈尔滨工程大学;2016年
2 林逸峰;基于计算机视觉的人体检测和人脸识别[D];吉林大学;2012年
3 刘亚洲;基于时空分析和多粒度特征表示的人体检测方法研究[D];哈尔滨工业大学;2009年
4 丁建浩;基于单目视觉的人体检测和运动恢复[D];浙江大学;2013年
5 李春明;视频图像中的运动人体检测和人脸识别[D];西安电子科技大学;2005年
6 倪洪印;基于视频的人体检测与目标跟踪方法研究[D];吉林大学;2014年
7 于海滨;基于头部特征提取的人体检测与跟踪及其应用[D];浙江大学;2007年
相关硕士学位论文 前10条
1 姚河花;基于梯度方向直方图的人体检测算法的改进[D];电子科技大学;2014年
2 翟渊;基于电子巡考系统的缺考、代考预警研究[D];复旦大学;2013年
3 吴亚顺;基于视频序列的运动人体检测和跟踪[D];西华大学;2015年
4 武文静;监控视频中的人体检测与跟踪算法研究[D];东南大学;2015年
5 戴萧何;基于RGB-D数据的人体检测与跟踪[D];浙江大学;2016年
6 刘显标;安防视频中人体及人脸检测的研究[D];昆明理工大学;2016年
7 刘阳;视频人体检测方法研究[D];南京信息工程大学;2016年
8 张恒瑜;基于卷积神经网络的多部位人体检测[D];北京工业大学;2016年
9 董志聪;超低空无人飞行器人体检测算法研究[D];湖南大学;2015年
10 周卓;人体再识别算法研究[D];东南大学;2016年
,本文编号:2226421
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2226421.html