基于并行计算的苹果采摘机器人关键技术研究
[Abstract]:Robot obstacle avoidance prediction model, image processing and storage optimization are important research contents in apple picking robot software system. The algorithm optimization and parallel processing of these modules is one of the shortcuts to improve the performance of apple picking robot software system. This paper describes a software and hardware frame structure of an extensible apple picking robot parallel system, and explains the feasibility and necessity of applying parallel technology in apple picking robot technology. Aiming at the related algorithms in the software system of apple picking robot, the design features and related performances of the module based on decision tree-based robot obstacle avoidance prediction model, noise-free apple image clustering and matching are studied and analyzed. The optimization algorithm or parallel algorithm of these algorithms is designed to improve the efficiency or accuracy of the algorithm by parallelizing the main line, using the MapReduce programming model and the cluster and other parallel technologies. The main research work and conclusion and innovation point are as follows: (1) the state space is mapped to the decision space relation matrix through the robot obstacle avoidance sample, which is the transformation space of decision tree decision. Traditional decision tree generation algorithm is limited to data mining and processing capability of large samples. A prediction model parallel generation algorithm based on MapReduce and attribute set kurtosis is presented in this paper. The decision tree generation in robot obstacle avoidance prediction can be processed in parallel. The algorithm avoids the disadvantage that the ID3 algorithm is not easy to remove noise and ignores the correlation between attributes by adopting the attribute set kurtosis as the selection criterion of the test property, reduces the attribute or the attribute set on the basis of taking into account the element interdependence in the attribute set and the attribute set, thereby removing the redundant attributes (set). Based on the simulation results of the robot obstacle avoidance operation example, the classification and decision-making of large-scale data samples can be processed by a parallel decision tree generation algorithm based on MapReduce and attribute set. At the same time, the complexity and the like are compared with the previous algorithm. has better extensibility and higher classification efficiency. (2) The parallel optimization algorithm based on spatial feature-based spectral clustering with noisy apple image segmentation is designed around the problems of image de-noising, optimization and parallel spectral clustering. The basic idea is that the three-dimensional space feature point compactness function of the image is constructed, so that the de-noising effect of the image is realized by constructing the pixel matrix of the adjacent points, the outlier matrix is used for splitting and linear representation by the other residual column vectors, the clustering optimization is realized by the outlier adjustment of the pixel matrix, The influence of outliers on the accuracy of the clustering of spectral clustering algorithms is reduced, and the MapReduce function is designed to parallelize. In order to verify the de-noising effect of spectral clustering method based on spatial features and the optimization of outliers, we add different degrees of Gaussian and salt-pepper noise to two apple images (the Gaussian noise and the probability of 0. 01, 0. 05 and 0. 1, respectively), The spectral clustering method, the spectral clustering method based on the spatial feature, the outlier optimization method and the apple target image segmentation map based on MapReduce are respectively obtained, and the segmentation accuracy of the four methods is calculated. The results show that the spectral clustering method is affected by the noise, and the partition effect of the spectral clustering method based on the spatial features is less affected by the noise, but there are still many wrong pixels in the boundary area. The outlier optimization method and the outlier optimization method based on MapReduce are superior to the spatial feature-based spectral clustering method in the segmentation of the boundary region; under the set experimental conditions, The accuracy of segmentation can be improved by 5% ~ 6% and 9% ~ 25% respectively with respect to the spectral clustering method based on spatial features and the traditional spectral clustering method, and the latter's time-acceleration ratio is about 11%. (3) An image matching parallel processing method based on clustering and reducing dimension number is proposed. The gray array information of large data volume can be processed, and its matching efficiency is improved without reducing similar measures. the method belongs to a fast one-dimensional projection template matching algorithm, A hierarchical nested string matching parallel algorithm based on isomorphic clusters is introduced to directly match the images and templates. This paper verifies the feasibility of parallel image processing of the new template fast parallel matching algorithm and compares the results. (4) In the process of the above algorithm experiment, the HDFS of the experimental platform Hadoop is the basic parallel storage structure, and the files such as the image meet the problem of non-equilibrium in the interview, and it has strong follow-up bias and timeliness. It is noted here that storage and pre-fetch optimization can improve and improve system efficiency. A scheme for combining different storage units (heterogeneous) into storage devices at different levels is proposed, and the files needed by this task are stored in a more suitable disk position, so that high-performance storage can be constructed under the condition that the cost factors are fully considered, and utilizing the pre-fetch technology to reduce the task waiting time of the MapReduce task. In this paper, by comparing several typical software and hardware parallel processing techniques, these techniques are applied to the main algorithms of apple picking robot software system (including robot obstacle avoidance prediction and decision-making, image processing and parallel storage optimization). Some useful conclusions are obtained through the example simulation and the running result analysis parallelization process of the platform test and the generation of intermediate code and the complexity analysis. It can also use MapReduce, cluster and other means to provide reference and reference for parallelization improvement.
【学位授予单位】:江苏大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S225.93;TP242
【相似文献】
相关期刊论文 前10条
1 王丽丽;郭艳玲;王迪;刘幻;;果蔬采摘机器人研究综述[J];林业机械与木工设备;2009年01期
2 夏天;以色列的温室采摘机器人[J];山东农机化;1997年11期
3 方建军;移动式采摘机器人研究现状与进展[J];农业工程学报;2004年02期
4 周天娟;张铁中;;果蔬采摘机器人技术研究进展和分析[J];农业机械;2006年22期
5 宋健;张铁中;徐丽明;汤修映;;果蔬采摘机器人研究进展与展望[J];农业机械学报;2006年05期
6 崔玉洁;张祖立;白晓虎;;采摘机器人的研究进展与现状分析[J];农机化研究;2007年02期
7 田素博;邱立春;秦军伟;刘春芳;;国内外采摘机器人机械手结构比较的研究[J];农机化研究;2007年03期
8 吕宏明;姬长英;;视觉技术在农业采摘机器人中的应用及发展[J];江西农业学报;2008年02期
9 刘长林;张铁中;杨丽;;果蔬采摘机器人研究进展[J];安徽农业科学;2008年13期
10 赵鹏;赵德安;;双目立体视觉在果树采摘机器人中的应用[J];农机化研究;2009年01期
相关会议论文 前7条
1 何蓓;刘刚;;果树采摘机器人研究综述[A];2007年中国农业工程学会学术年会论文摘要集[C];2007年
2 赵德安;姬伟;张超;李占坤;;果树采摘机器人控制系统设计[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
3 赵德安;吕继东;姬伟;陈玉;张颖;;果树采摘机器人及控制系统研制[A];中国农业工程学会2011年学术年会论文集[C];2011年
4 石兴禄;邹湘军;卢俊;陈强;陈燕;王红军;刘天湖;;虚拟采摘机器人统一建模与三维动态仿真[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
5 刘继展;李萍萍;李智国;倪齐;;番茄采摘机器人真空吸盘装置设计及试验研究[A];纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C];2009年
6 袁挺;李伟;谭豫之;杨庆华;高峰;任永新;;温室环境下黄瓜采摘机器人信息获取技术研究[A];走中国特色农业机械化道路——中国农业机械学会2008年学术年会论文集(下册)[C];2008年
7 魏锡光;王库;;仿自然环境条件下番茄采摘机器人设计研究[A];中国农业工程学会电气信息与自动化专业委员会、中国电机工程学会农村电气化分会科技与教育专委会2010年学术年会论文摘要[C];2010年
相关重要报纸文章 前2条
1 本报记者 段佳;果蔬采摘机器人有了三维视力[N];大众科技报;2009年
2 吕继东 赵德安 姬伟 陈玉;浅谈国内外采摘机器人[N];中国农机化导报;2014年
相关博士学位论文 前10条
1 顾玉宛;基于并行计算的苹果采摘机器人关键技术研究[D];江苏大学;2016年
2 顾宝兴;智能移动式水果采摘机器人系统的研究[D];南京农业大学;2012年
3 吕继东;苹果采摘机器人视觉测量与避障控制研究[D];江苏大学;2012年
4 刘继展;番茄采摘机器人真空吸持系统分析与优化控制研究[D];江苏大学;2010年
5 黄铝文;苹果采摘机器人视觉识别与路径规划方法研究[D];西北农林科技大学;2013年
6 纪超;温室果蔬采摘机器人视觉信息获取方法及样机系统研究[D];中国农业大学;2014年
7 李智国;基于番茄生物力学特性的采摘机器人抓取损伤研究[D];江苏大学;2011年
8 吕强;柑橘采摘机器人工作场景信息感知技术与路径规划研究[D];江苏大学;2010年
9 戚利勇;黄瓜采摘机器人视觉关键技术及系统研究[D];浙江工业大学;2011年
10 谢忠红;采摘机器人图像处理系统中的关键算法研究[D];南京农业大学;2013年
相关硕士学位论文 前10条
1 王亚平;自主采摘机器人竞赛平台系统研究[D];江西理工大学;2015年
2 李珈慧;苹果采摘机器人移动平台机械系统的设计及仿真[D];南京农业大学;2014年
3 贺橙林;基于机器视觉的气动采摘机器人研究[D];上海交通大学;2015年
4 李敏;果蔬快速采摘机器人柔性负载刚柔耦合建模与仿真[D];北方工业大学;2016年
5 田丽芳;基于纯滚动转向的采摘机器人轮式AGV系统设计与试验研究[D];江苏大学;2016年
6 李占坤;果树采摘机器人控制系统研究与设计[D];江苏大学;2010年
7 赵庆波;果树采摘机器人控制与避障技术研究[D];江苏大学;2008年
8 苏帅;猕猴桃采摘机器人信息感知的基础研究[D];西北农林科技大学;2013年
9 陈天宏;双目采摘机器人路径优化设计的研究[D];东北农业大学;2010年
10 杨文亮;苹果采摘机器人机械手结构设计与分析[D];江苏大学;2009年
,本文编号:2292724
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2292724.html