视频中人体行为识别若干问题研究
[Abstract]:Behavior recognition is the focus and focus of computer vision, machine learning, artificial intelligence and so on. The analysis and recognition of human behavior in image and video data in this direction have been applied in safety monitoring, disability monitoring, multimedia content understanding, human-computer interaction and virtual reality. However, the existing behavior recognition technology has many limitations in practical application. In order to meet the practical needs, this paper studies the problem of human behavior recognition in video. 1) In a certain scenario, the samples of some behaviors are extremely difficult to collect and how to use very few samples to quickly identify specific behaviors. 2) how to effectively identify specific behaviors in a more complex scene detectable by a pedestrian; 3) how to quickly and effectively identify a multi-class behavior in a more complex scene detectable by a pedestrian; and 4) in a complex scene where the pedestrian is not effectively detected, How to identify the multi-class behavior effectively. Based on the theory of pattern recognition, machine learning and so on, this paper develops a series of innovative research on the basis of the theory of pattern recognition, machine learning and so on. The main research work and contribution of this paper are as follows: 1) A global behavior representation method based on Hov voting is proposed, i.e., the representation of the displacement histogram sequence. The method comprises the following steps of: roughly estimating the motion area in the behavior video; then, using a two-dimensional displacement histogram to characterize the motion information of the human body in the continuous images according to the matching condition of the points of interest in the continuous multi-frame image in the moving area; and finally, according to the displacement histogram sequence, The behavior is identified by a measure of the similarity of the matrix cosine; for the identified behavior, the matching interest points accurately locate the spatiotemporal positions of the behavior. The experimental results show that the method can detect the specific behavior effectively under the static or background more uniform scene. In addition, the method adopts a coarse-to-fine behavior positioning mode, and effectively improves the characterization speed of the behavior. the method solves the problem of identification and detection of specific behaviors in rare cases of samples. The method comprises the following steps of: firstly detecting and tracking a human body, and performing space-time feature coding on the sequence shape characteristics of each part of the human body by using a multi-limiting Boltzmann machine (RBM); then the space-time feature codes of each part of the human body are coded by the RBM neural network as the global space-time feature representation of the behavioral video; and finally the behavior is identified by the trained support vector machine classifier. A large number of experiments verify the effectiveness of the method. The method for extracting the time-space features from the shape characteristic sequence of each part of the human body opens up a new perspective of behavioral feature extraction. A fast multi-class behavior recognition algorithm based on inverted index is proposed in this paper. The method comprises the following steps of: firstly, detecting and tracking an area of interest of a human body to be tracked, extracting shape motion characteristics, and constructing a behavior state binary tree by utilizing the characteristics through a hierarchical clustering method; based on the state binary tree, the behavior is characterized as a behavior state sequence rapidly; then, calculating the behavior state sequence corresponding to the two score vectors of each behavior category by constructing the behavior state inverted index table and the behavior state transition inverted index table; and finally, identifying the behavior according to the weighted score vector. Experiments show that the method can quickly identify the multi-class behavior. the application of the behavior state binary tree accelerates the characterization of the behavior state sequence of the behavior video, and the use of the inverted index table obviously improves the recognition speed of the multi-class behavior. The method solves the problem of fast recognition of multi-class behavior in complex scenes. 4) A method based on independent subspace analysis network is proposed for space-time feature coding of video behavior using spatial features learned from video. firstly, the method utilizes an independent subspace analysis network introduced with regularization constraint to study a set of spatial features which are slowly invariant in a set of time; and performing pooled processing on the features extracted from the sampled video blocks in a temporal domain and a spatial domain, and the local time-space characteristics of the identification behavior can be effectively identified. Then, the behavior is characterized using the extracted local space-time feature based on the feature bag (BOF) model. Finally, the nonlinear support vector machine classifier is adopted to identify the multi-class behavior. The experimental results show that the time-invariant regularization constraints and the introduction of de-noising criteria make the spatial features of learning and the extracted local time-space features have strong robustness to the clutter background, occlusion and other factors. The method solves the problem of multi-class behavior recognition in complex scenes.
【学位授予单位】:电子科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 李宁;须德;傅晓英;袁玲;;结合人体运动特征的行为识别[J];北京交通大学学报;2009年02期
2 张伟东;陈峰;徐文立;杜友田;;基于阶层多观测模型的多人行为识别[J];清华大学学报(自然科学版);2009年07期
3 吴联世;夏利民;罗大庸;;人的交互行为识别与理解研究综述[J];计算机应用与软件;2011年11期
4 申晓霞;张桦;高赞;薛彦兵;徐光平;;一种鲁棒的基于深度数据的行为识别算法[J];光电子.激光;2013年08期
5 郑胤;陈权崎;章毓晋;;深度学习及其在目标和行为识别中的新进展[J];中国图象图形学报;2014年02期
6 曾青松;余明辉;贺卫国;李玲;;一种行为识别的新方法[J];昆明理工大学学报(理工版);2009年06期
7 谷军霞;丁晓青;王生进;;基于人体行为3D模型的2D行为识别[J];自动化学报;2010年01期
8 李英杰;尹怡欣;邓飞;;一种有效的行为识别视频特征[J];计算机应用;2011年02期
9 王新旭;;基于视觉的人体行为识别研究[J];中国新通信;2012年21期
10 王忠民;曹栋;;坐标转换在移动用户行为识别中的应用[J];北京邮电大学学报;2014年S1期
相关会议论文 前7条
1 苗强;周兴社;於志文;倪红波;;一种非觉察式的睡眠行为识别技术研究[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
2 齐娟;陈益强;刘军发;;基于多模信息感知与融合的行为识别[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
3 方帅;曹洋;王浩;;视频监控中的行为识别[A];2007中国控制与决策学术年会论文集[C];2007年
4 黄紫藤;吴玲达;;监控视频中简单人物行为识别研究[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
5 安国成;罗志强;李洪研;;改进运动历史图的异常行为识别算法[A];第八届中国智能交通年会优秀论文集——智能交通与安全[C];2013年
6 王忠民;曹栋;;坐标转换在移动用户行为识别中的应用研究[A];2013年全国通信软件学术会议论文集[C];2013年
7 刘威;李石坚;潘纲;;uRecorder:基于位置的社会行为自动日志[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
相关重要报纸文章 前4条
1 李晨光;导入CIS要注意什么?[N];河北经济日报;2001年
2 农发行鹿邑支行党支部书记 行长 刘永贞;发行形象与文化落地农[N];周口日报;2007年
3 东林;行为识别新技术让监控没有“死角”[N];人民公安报;2007年
4 田凯 徐蕊 李政育 信木祥;博物馆安全的国际经验[N];中国文物报;2014年
相关博士学位论文 前10条
1 邵延华;基于计算机视觉的人体行为识别研究[D];重庆大学;2015年
2 仝钰;基于条件随机场的智能家居行为识别研究[D];大连海事大学;2015年
3 冯银付;多模态人体行为识别技术研究[D];浙江大学;2015年
4 姜新波;基于三维骨架序列的人体行为识别研究[D];山东大学;2015年
5 韩姗姗;基于视觉的运动人体特征描述与行为识别研究[D];浙江工业大学;2015年
6 裴利沈;视频中人体行为识别若干问题研究[D];电子科技大学;2016年
7 何卫华;人体行为识别关键技术研究[D];重庆大学;2012年
8 吴秋霞;复杂场景下的人体行为识别[D];华南理工大学;2012年
9 于成龙;基于视频的人体行为识别关键技术研究[D];哈尔滨工业大学;2014年
10 王亮;基于判别模式学习的人体行为识别方法研究[D];哈尔滨工业大学;2011年
相关硕士学位论文 前10条
1 陈钰昕;基于时空特性的人体行为识别研究[D];燕山大学;2015年
2 任亮;智能车环境下车辆典型行为识别方法研究[D];长安大学;2015年
3 赵利强;基于移动轨迹分析的大鼠行为识别研究[D];浙江大学;2016年
4 魏汝翔;基于人体运动捕捉数据的运动分析技术研究[D];北京交通大学;2016年
5 孙笛;基于信息融合的恶意代码威胁性分析及判定关键技术研究[D];解放军信息工程大学;2014年
6 田行辉;基于视频的人体行为分析算法研究[D];东南大学;2015年
7 黄诗辉;面向视频的人类行为识别技术的研究与实现[D];东南大学;2015年
8 徐娇;高密度群体分割及其行为识别技术研究[D];中国计量学院;2015年
9 魏烨;基于智能手机传感器的无监督行为识别研究[D];兰州大学;2016年
10 钟君;基于加速度传感器的日常行为识别的特征提取方法研究[D];兰州大学;2016年
,本文编号:2300837
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2300837.html