稳健的杂波抑制与参数估计方法研究
[Abstract]:As a kind of military sensor, the airborne early-warning radar plays an important role in the modern war. The airborne radar is in a top-down state when the low-altitude target is detected, and many ground clutter is inevitably received. The ground clutter intensity is large, the range is wide, the moving target is often inundated in the clutter, thus the detection performance of the airborne radar is reduced. The airborne radar clutter suppression technique includes the ultra-low sidelobe antenna, the offset phase center antenna and the time-time adaptive processing (STAP). when the space-time adaptive processing is a two-dimensional adaptive filtering technology, the two-dimensional filter is constructed by utilizing the time domain freedom degree provided by the array antenna and the time domain degree of freedom provided by the phase parameter pulse train, and the moving target detection performance of the airborne radar is effectively improved. The theory of STAP is perfect, but in the practical engineering application, there are still more problems. The STAP method under the condition of the small sample, the STAP method in the non-uniform environment, the robust STAP method, the knowledge-assisted STAP method, and the STAP method under the complex electromagnetic environment are the hot issues in the current STAP research field, and the problem of the urgent need to be solved at the same time. In this paper, the research is carried out about the above five aspects, the main contents of the work are as follows: the second chapter studies the estimation of the diagonal loading parameters. The diagonal loading can improve the performance of the self-adaptive processing in the case of small samples when the space is empty. However, the determination of the loading parameters in practice is a more difficult problem. In order to solve this problem, an adaptive diagonal loading parameter estimation method based on echo data is proposed. The method comprises the following steps of: firstly, converting a diagonal loading problem into a Tikhonov planning problem, then constructing an optimization problem by using a generalized cross-verification criterion, and finally solving the optimization problem by adopting a secant method, and calculating a loading parameter. The results of the simulation data show that the method can estimate the loading parameters accurately, and the application of the diagonal loading in practice is improved. The third chapter studies the detection of dense target. When the airborne radar is in the ground motion target detection, the moving target density in the main beam irradiation range is large. the covariance matrix is severely disturbed by the target signal and the conventional non-uniform detector performance is reduced. In order to solve this problem, a robust non-uniform detector based on weight-weighted adaptive power is proposed. the method reduces the influence of the singular sample on the calculation of the covariance matrix by self-adaptive weight weighting of the training sample set. The experimental results of the simulation and the measured data show that the method can effectively eliminate the singular samples in the training samples and improve the robustness of the traditional adaptive power residual detector. In the fourth chapter, the estimation of the phase error of the matrix is studied. The phase error of the array of airborne radar will affect the parameter estimation and positioning performance of the moving target. In order to solve this problem, two phase error estimation methods of clutter sub-space orthogonal method and clutter Frobenius norm are proposed. The clutter subspace orthogonal method uses the orthogonality of the clutter compensation space and the maximum left singular value vector to estimate the matrix phase error, and the clutter Frobenius norm is to be used to estimate the matrix phase error by fitting the reconstructed data and the actual received data. The results of the simulation data show that the two methods can obtain good parameter estimation precision and robustness under the condition of low pulse number, low sample number and low noise ratio. The fifth chapter studies the estimation of the speed and the yaw angle of the carrier. The speed and yaw angle are the necessary parameters in the adaptive processing at the time of knowledge-assisted air-air, however, in some cases, these two parameters are not available or have a lower accuracy. In order to solve this problem, a parameter estimation method based on curve fitting is proposed. The method comprises the following steps of: firstly, using a sub-aperture smoothing capon spectrum estimation to receive the power spectrum of the received data, then extracting the power spectrum track corresponding to the clutter by using a threshold detection method, and finally, substituting the two-dimensional frequency value of the clutter track and the known radar configuration parameters into a minimum truncation two-by-by-by-factor estimator for solving. The experimental results of the simulation and the measured data show that the method improves the accuracy and robustness of the traditional curve fitting method. In chapter 6, the countermeasure of coherent forward interference is studied. Coherent forward interference can cause a large number of false targets to be generated by the radar at the receiving end, and the detection performance of the radar to the real object can be reduced. In order to solve this problem, a self-adaptive transmission technique is proposed to combat coherent forward interference. The method comprises the following steps of: firstly, carrying out detection and parameter estimation on the forwarding-type interference by using a high-weight-frequency pulse train which is pre-transmitted by the radar; then, optimizing the array emission direction map by utilizing the estimated interference parameters in the normal working mode, so that the radar is formed into a zero-trap in the interference detection direction, so that the purpose of reducing the probability of the interference machine to intercept the radar transmitting signal is achieved. The results of the simulation data show that the method can accurately detect and estimate the forwarding-type interference. Compared with other signal processing methods, the method effectively reduces the burden of signal processing at the receiving end.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN959.73
【相似文献】
相关期刊论文 前10条
1 胡可欣;胡爱明;;自适应杂波抑制技术在雷达中的应用[J];现代电子技术;2006年08期
2 吕雁;苏新主;;一种基于背景预测的红外杂波抑制新方法[J];系统工程与电子技术;2007年08期
3 牟妙辉;朱国富;贺峰;周智敏;;一种用于墙后静止人体微动特征检测的杂波抑制方法[J];电子技术;2010年02期
4 陈建春,徐少莹;多杂波抑制技术[J];系统工程与电子技术;2000年08期
5 叶少华,朱兆达,朱岱寅;一种改进的二端口杂波抑制干涉仪[J];系统工程与电子技术;2002年08期
6 施文武;;一种多频道运动杂波抑制技术[J];现代电子技术;2006年14期
7 窦泽华;张仕元;李明;;基于雷达回波识别的杂波抑制[J];信号处理;2009年08期
8 刘涛;张永;栾金龙;刘振华;马红光;;非正侧视阵近程杂波抑制鲁棒俯仰滤波算法[J];现代雷达;2010年12期
9 J.P.赖利;;模糊距离杂波对杂波抑制的限制[J];雷达与对抗;1990年04期
10 科卞;自适应杂波抑制技术[J];电子科技大学学报;1992年04期
相关会议论文 前3条
1 张蓓;刘家学;吴仁彪;;探地雷达子空间地杂波抑制方法研究[A];第十二届全国信号处理学术年会(CCSP-2005)论文集[C];2005年
2 吴仁彪;刘家学;张蓓;;探地雷达地杂波抑制方法研究进展[A];第十二届全国信号处理学术年会(CCSP-2005)论文集[C];2005年
3 王玲;逯贵祯;肖怀宝;;一种适合机载多通道SAR低速目标的地杂波抑制新方法[A];2009年全国天线年会论文集(下)[C];2009年
相关重要报纸文章 前1条
1 吴巍 李宏宇;203所宽带捷变频信号源填补国内空白[N];中国航天报;2011年
相关博士学位论文 前7条
1 代保全;机载数字阵列雷达非均匀杂波抑制方法研究[D];西安电子科技大学;2015年
2 李学仕;高分辨率宽测绘带SAR动目标处理方法研究[D];西安电子科技大学;2015年
3 姜磊;稳健的杂波抑制与参数估计方法研究[D];西安电子科技大学;2016年
4 伍勇;空时自适应杂波抑制[D];清华大学;2008年
5 曹杨;机载雷达非自适应杂波抑制方法研究[D];西安电子科技大学;2014年
6 吴宏刚;时空非平稳强杂波抑制与微弱运动目标检测技术[D];电子科技大学;2006年
7 张增辉;天基雷达空时自适应杂波抑制技术[D];国防科学技术大学;2008年
相关硕士学位论文 前10条
1 陈文驰;基于目标杂波区分的杂波抑制方法研究[D];哈尔滨工业大学;2015年
2 窦道祥;MIMO-OTH雷达中的多模传播与杂波抑制研究[D];电子科技大学;2015年
3 翟雯;基于空时自适应处理技术的雷达非均匀杂波抑制方法研究[D];电子科技大学;2014年
4 董烁烁;机载阵列雷达杂波抑制方法研究[D];西安电子科技大学;2014年
5 张斓子;穿墙成像雷达杂波抑制与目标检测技术研究[D];国防科学技术大学;2013年
6 赵中兴;建筑物透视探测人体成像技术研究[D];电子科技大学;2014年
7 卢骁;雷达旁瓣相消和杂波抑制的研究与实现[D];西安电子科技大学;2014年
8 郑梦;微波探墙成像中的杂波抑制算法研究[D];北京理工大学;2016年
9 史洋;基于微弱目标检测的图像背景杂波抑制技术研究[D];电子科技大学;2012年
10 张媛;机载杂波抑制实时处理器的研制[D];电子科技大学;2005年
,本文编号:2348263
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2348263.html