基于稀疏表示的视觉目标跟踪方法研究
[Abstract]:The target tracking problem in the video sequence is a hot topic in the field of computer vision. It combines the research results in the fields of machine learning and pattern recognition, and has been widely used in video surveillance, intelligent traffic and modern military. Aiming at the problem of target tracking, researchers at home and abroad have carried out a lot of research and put forward many effective tracking algorithms, but how to track the target of apparent change in the complex and changeable natural scene is still a challenging problem. The common tracking difficulties include the change of the scene light flow, the change of the target scale, the local occlusion, the non-rigid deformation of the target, and the change of the position. these difficulties lead to an apparent non-linear change in the target's appearance in the video, making the tracking problem more complex. The aim of this paper is to improve the accuracy and robustness of the target tracking algorithm. The main contributions of this paper are as follows: (1) A two-step target tracking algorithm based on the overall sparse representation of particle pre-judgment is presented. Aiming at the problem that most relevant algorithms need to observe and model all sampling particles, the algorithm uses the sparse representation of the whole template in the first step to model the particle pre-judgment problem, and the particles which deviate from the real state of the target are pre-determined by the particles, the number of samples can be effectively reduced, and the algorithm efficiency is improved. in order to reduce the possibility of drift in the tracking, the algorithm improves the accuracy of the tracking result by taking the initial state and the current state of the target as the observation reference in the second step. The experimental results of a plurality of test videos show the effectiveness of the algorithm. (2) A target tracking algorithm based on partial discrimination and sparse representation is proposed. aiming at the problem that the existing correlation algorithm is insufficient to distinguish the target and the background, the local background image is added as a negative sample to train the dictionary, the expression capability and the judgment capability of the dictionary are taken into account, the problem that the existing local sparse model lacks the target global information is solved, The target is modeled as a sparse coding histogram of a given local image in a dictionary space, which form a sparse dictionary and have a certain structure, so that the target model can effectively combine the local features and the global structural features of the target. In order to improve the accuracy of the observation model, a similarity coefficient based on the target structure information is designed to measure the similarity between the target and the sample, and the target model is actively updated to meet the apparent change in the tracking. The experimental results show that the algorithm can deal with most of the tracking difficulties and has higher tracking precision. (3) A target tracking algorithm based on the sparse representation of the weighted structure is proposed. The method adopts the structure sparse representation to model the target, can fully utilize the structure information between the target local images, effectively avoids the degradation of the model, and simultaneously adds the background information in the structure sparse dictionary, so that the discrimination capability of the model on the background can be enhanced; in addition, the importance weight is distributed according to the action of the local image when the target is expressed, and the target is modeled as a weighted structure sparse model, so that the robustness of the model is greatly improved; and in order to reduce the influence of the local occlusion on the tracking, the occlusion detection module is added when the observation model is designed. The experimental results show that the weighted-structure sparse model has good adaptability to the apparent change of the target, and the algorithm shows good robustness and accuracy in the tracking. (4) A multi-task tracking algorithm based on local joint sparse representation is proposed. Aiming at the problem that the correlation algorithm has insufficient use of the sample structure information, the sparse coding of the local image in the sample is regarded as an independent task, and the partial images of all the samples are combined and sparse coded under the multi-task learning framework. The combined sparse coding can maximize the structural relationship between the samples and the samples, and improve the working efficiency of the algorithm while increasing the expression ability of the model. In addition, a joint similarity measure function is designed to measure the similarity between the target and the sample from both the whole and the local aspects, and the reliability of the observation model is improved. The experiment shows that the algorithm has more accurate tracking results on the test video. In this paper, the target tracking of the video sequence is realized by the sparse representation of the whole, the sparse representation of the local discrimination, the sparse representation of the weighted structure and the local joint sparse representation, and the four tracking algorithms are analyzed. The experimental results show that this paper improves the accuracy and robustness of the target tracking algorithm.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41
【相似文献】
相关期刊论文 前10条
1 李映;张艳宁;许星;;基于信号稀疏表示的形态成分分析:进展和展望[J];电子学报;2009年01期
2 赵瑞珍;王飞;罗阿理;张彦霞;;基于稀疏表示的谱线自动提取方法[J];光谱学与光谱分析;2009年07期
3 杨蜀秦;宁纪锋;何东健;;基于稀疏表示的大米品种识别[J];农业工程学报;2011年03期
4 史加荣;杨威;魏宗田;;基于非负稀疏表示的人脸识别[J];计算机工程与设计;2012年05期
5 高志荣;熊承义;笪邦友;;改进的基于残差加权的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2012年03期
6 朱杰;杨万扣;唐振民;;基于字典学习的核稀疏表示人脸识别方法[J];模式识别与人工智能;2012年05期
7 耿耀君;张军英;袁细国;;一种基于稀疏表示系数的特征相关性测度[J];模式识别与人工智能;2013年01期
8 张疆勤;廖海斌;李原;;基于因子分析与稀疏表示的多姿态人脸识别[J];计算机工程与应用;2013年05期
9 李正周;王会改;刘梅;丁浩;金钢;;基于形态成分稀疏表示的红外小弱目标检测[J];弹箭与制导学报;2013年04期
10 胡正平;赵淑欢;李静;;基于块稀疏递推残差分析的稀疏表示遮挡鲁棒识别算法研究[J];模式识别与人工智能;2014年01期
相关会议论文 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
相关博士学位论文 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年
5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年
6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年
7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年
8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年
9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年
10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年
相关硕士学位论文 前10条
1 王道文;基于稀疏表示的目标跟踪算法研究[D];华南理工大学;2015年
2 李哲;基于稀疏表示和LS-SVM的心电信号分类[D];河北大学;2015年
3 孙雪青;Shearlet变换和稀疏表示相结合的甲状腺结节图像融合[D];河北大学;2015年
4 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
5 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
6 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
7 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
8 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
9 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
10 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
,本文编号:2382451
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2382451.html