粒子群算法及电厂若干问题的研究
[Abstract]:High energy consumption and heavy pollution are important factors that restrict the development of thermal power generation. Under the premise of ensuring safe production and meeting the demand of load, the coal consumption and pollutant discharge of the power plant should be reduced as much as possible. The optimization method based on the modern intelligent algorithm is an effective way to improve the operation economy of the power plant and reduce the pollutant discharge. Therefore, a wide range of power and technology workers are required to study the intelligent algorithms and the power plant problems themselves. Based on the comprehensive summary of the development of particle swarm optimization (PSO), load distribution optimization and the optimization of NOx emission reduction, the corresponding research has been carried out and some useful results have been obtained. The main contents of this paper are as follows: (1) In view of the precocious problem and the convergence problem of the particle swarm optimization, the orthogonal experiment design learning strategy is introduced and improved, the valuable information is extracted from the group optimal particle and the sub-optimal particle, and the new guiding particles are formed; In order to enhance the ability of the best particle to jump out of the local best, the simulated annealing search strategy is introduced and improved, and the simulated annealing search is carried out on the group's optimal particles with a certain probability. The improved algorithm is tested on the standard test function. The results show that the improved algorithm is improved in the aspects of average value, standard deviation, number of times of evaluation, success rate and successful performance. (2) in order to overcome the precocious problem of the search, according to the diversity of the particle swarm, the adjustment of the inertia weight is guided, a new method for mapping the diversity and the inertia weight is proposed, The convergence of the improved algorithm is theoretically demonstrated by the stability criterion of the linear system and the probability theory. T-test and Wilcoxon test show that the improved algorithm is superior to the previous algorithm, and the improved algorithm is superior to the typical particle swarm algorithm and some other typical algorithms in the aspects of average value, standard deviation, number of times of evaluation, success rate and success performance. (3) In order to improve the accuracy of the modeling prediction, the kernel parameters and the penalty parameters of the support vector machine are optimized by the improved particle swarm optimization algorithm; the integrated support vector machine model for processing the large samples is introduced, and the problem of the parameter selection of the sub-support vector machine is improved; According to the simulation test of different loads, the design data of the combustor and the running characteristics of the boiler, a 600MW unit has been adjusted and tested at the low 3 load stage of the high school, and the characteristic data related to the NOx emission characteristics and the boiler thermal efficiency are obtained. Based on the improved support vector machine, the emission characteristic model is established based on the variables of load, coal quality, total air volume, total fuel quantity, secondary air-wind door opening degree, burn-out wind-air door opening degree, air box and furnace difference pressure and burner swing angle as input, and the NOx emission amount is the output. The prediction results show that the prediction accuracy of the model is high and the generalization ability is strong. (4) In order to solve the problem of multi-unit and operation restricted area in the optimization problem of load distribution, an improved particle swarm algorithm is introduced, which shows that the improved algorithm can give a better allocation scheme, and a method for determining the carbon content of the fly ash is put forward. so that the coal quality calculation method based on the real-time data is improved, the corresponding coal quality is calculated on the basis of the operation data of the unit, The prediction model of the coal consumption characteristic of the unit based on the improved support vector machine is put forward, and the good prediction performance of the model is verified by the calculation example; based on the established model of the coal consumption characteristic, the load distribution optimization of a certain power plant is carried out, and the feasibility and the effectiveness of the coal consumption characteristic model are verified. (5) An in-depth study of the NOx emission reduction optimization model is carried out, on the basis of considering the change of coal quality and the output of the unit load, the optimization model of NOx emission reduction is improved, and the effectiveness and the reliability of the model are verified by the example analysis; and on the basis of the improved NOx emission reduction optimization model, An improved particle swarm algorithm is used to study the optimization of NOx emission reduction and to compare with the relevant typical algorithms. The good performance of the improved algorithm is verified by the calculation example, and the result is consistent with the principle of inhibiting the generation of NOx.
【学位授予单位】:东南大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TM621;TP18
【相似文献】
相关期刊论文 前10条
1 全芙蓉;;粒子群算法的理论分析与研究[J];硅谷;2010年23期
2 吴军;李为吉;;改进的粒子群算法及在结构优化中的应用[J];陕西理工学院学报(自然科学版);2006年04期
3 段海涛;刘永忠;冯霄;;水系统优化的粒子群算法分析[J];华北电力大学学报(自然科学版);2007年02期
4 王伟;;混合粒子群算法及其优化效率评价[J];中国水运(学术版);2007年06期
5 付宜利;封海波;孙建勋;李荣;马玉林;;机电产品管路自动敷设的粒子群算法[J];机械工程学报;2007年11期
6 蒋荣华;王厚军;龙兵;;基于离散粒子群算法的测试选择[J];电子测量与仪器学报;2008年02期
7 周苗;陈义保;刘加光;;一种新的协同多目标粒子群算法[J];山东理工大学学报(自然科学版);2008年05期
8 姚峰;杨卫东;张明;;改进粒子群算法及其在热连轧负荷分配中的应用[J];北京科技大学学报;2009年08期
9 张大兴;贾建援;张爱梅;郭永献;;基于粒子群算法的三轴跟瞄装置跟踪策略研究[J];仪器仪表学报;2009年09期
10 王丽萍;江波;邱飞岳;;基于决策偏好的多目标粒子群算法及其应用[J];计算机集成制造系统;2010年01期
相关会议论文 前10条
1 朱童;李小凡;鲁明文;;位置加权的改进粒子群算法[A];中国科学院地质与地球物理研究所第11届(2011年度)学术年会论文集(上)[C];2012年
2 陈定;何炳发;;一种新的二进制粒子群算法在稀疏阵列综合中的应用[A];2009年全国天线年会论文集(上)[C];2009年
3 陈龙祥;蔡国平;;基于粒子群算法的时滞动力学系统的时滞辨识[A];第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集[C];2009年
4 于颖;李永生;於孝春;;新型离散粒子群算法在波纹管优化设计中的应用[A];第十一届全国膨胀节学术会议膨胀节设计、制造和应用技术论文选集[C];2010年
5 刘卓倩;顾幸生;;一种基于信息熵的改进粒子群算法[A];系统仿真技术及其应用(第7卷)——'2005系统仿真技术及其应用学术交流会论文选编[C];2005年
6 熊伟丽;徐保国;;粒子群算法在支持向量机参数选择优化中的应用研究[A];2007中国控制与决策学术年会论文集[C];2007年
7 方卫华;徐兰玉;陈允平;;改进粒子群算法在大坝力学参数分区反演中的应用[A];2012年中国水力发电工程学会大坝安全监测专委会年会暨学术交流会论文集[C];2012年
8 熊伟丽;徐保国;;单个粒子收敛中心随机摄动的粒子群算法[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
9 马向阳;陈琦;;以粒子群算法求解买卖双方存货主从对策[A];第十二届中国管理科学学术年会论文集[C];2010年
10 赵磊;;基于粒子群算法求解多目标函数优化问题[A];第二十一届中国(天津)’2007IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C];2007年
相关博士学位论文 前10条
1 李庆伟;粒子群算法及电厂若干问题的研究[D];东南大学;2016年
2 杜毅;多阶段可变批生产线重构的研究[D];广东工业大学;2016年
3 王芳;粒子群算法的研究[D];西南大学;2006年
4 安镇宙;家庭粒子群算法及其奇偶性与收敛性分析[D];云南大学;2012年
5 刘建华;粒子群算法的基本理论及其改进研究[D];中南大学;2009年
6 黄平;粒子群算法改进及其在电力系统的应用[D];华南理工大学;2012年
7 胡成玉;面向动态环境的粒子群算法研究[D];华中科技大学;2010年
8 张静;基于混合离散粒子群算法的柔性作业车间调度问题研究[D];浙江工业大学;2014年
9 张宝;粒子群算法及其在卫星舱布局中的应用研究[D];大连理工大学;2007年
10 刘宏达;粒子群算法的研究及其在船舶工程中的应用[D];哈尔滨工程大学;2008年
相关硕士学位论文 前10条
1 张忠伟;结构优化中粒子群算法的研究与应用[D];大连理工大学;2009年
2 李强;基于改进粒子群算法的艾萨炉配料优化[D];昆明理工大学;2015年
3 付晓艳;基于粒子群算法的自调节隶属函数模糊控制器设计[D];河北联合大学;2014年
4 余汉森;粒子群算法的自适应变异研究[D];南京信息工程大学;2015年
5 梁计锋;基于改进粒子群算法的交通控制算法研究[D];长安大学;2015年
6 王伟;大型螺纹旋风硬铣削数值模拟及工艺参数优化[D];浙江大学;2016年
7 李玲玉;基于粒子群算法的城市轨道交通列车节能优化研究[D];北京交通大学;2016年
8 苗冬云;基于改进粒子群算法的云任务调度方案研究[D];安徽财经大学;2015年
9 蒋晓\~;粒子群算法在多维优化问题中的改进研究[D];浙江理工大学;2016年
10 刘角;生态系统粒子群算法及其在阵列天线方向图优化中的应用[D];太原理工大学;2016年
,本文编号:2399407
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2399407.html