复杂环境下智能车辆动态目标三维感知方法研究

发布时间:2019-01-21 19:31
【摘要】:驾驶员对交通环境信息处理包括感觉、感知和认知三个阶段,同样,智能车辆“驾驶脑”只有像人类一样达到对环境感知的升华,才能做到真正的“智能”驾驶。作为智能车提高环境感知深度的重要手段,当前基于三维激光雷达的动态目标感知研究已获得极大的关注并取得许多成果。但仍存在以下问题:一是感知的环境简单,即通常集中于单一感知对象、稀疏目标分布的简单交通场景,较少对目标混杂、密集分布的复杂场景进行研究;二是多处于低层次感知研究阶段,即以动态目标的检测及识别为研究重点,较少深入认知目标内在行为。针对上述问题,本文对复杂环境下基于三维激光雷达的动态目标感知方法进行研究,围绕动态目标的感觉、感知及认知机理,以其状态、类别及行为感知为具体研究对象,并通过自然环境下采集的数据对系统性能进行验证。论文首先立足于智能车辆环境感知的两个科学问题,对动态目标感知的研究对象和范围进行明确,提出从动态目标状态、类别至行为的从低级至高级感知的研究思路,并在此基础上构建总体研究方案及体系结构。针对于海量点云条件下目标检测准确性与实时性的矛盾,将点云分割转换至图像域中并利用图像学中成熟方法来进行处理。而后,为克服目标识别中不同距离下目标点云密度差异性问题,提出一种点云密度增强方法来生成均匀、满足密度要求的新的目标点云,以提高点云特征的适用性及模型分类能力。在此基础上,对车辆目标关键状态参数进行建模,采用决策树-跟踪门及联合概率数据关联-卡尔曼滤波的跟踪方法来进行参数优化。最后对车辆目标运动行为进行分析建模,提出了基于自然语音识别方法的车辆行为识别模型,并以换道行为作为对象进行实现。为验证方法有效性,以自然交通环境下采集数据进行实验验证。结果证明,本文研究三维感知系统能够在复杂交通环境下快速、准确地计算出动态目标的状态及类别参数,同时基于自然语音识别方法的行为识别模型不仅有助于建立起通用的车辆行为识别框架和体系,其输出结果还能准确、有层次的体现行为程度,提高感知深度。
[Abstract]:Drivers' processing of traffic environment information includes three stages: sensation, perception and cognition. Similarly, intelligent vehicle "driving brain" can only achieve real "intelligent" driving if it is sublimated to environmental perception like human beings. As an important means for intelligent vehicle to improve the depth of environmental perception, the research of dynamic target perception based on 3D lidar has been paid great attention to and many achievements have been made. However, the following problems still exist: first, the environment of perception is simple, that is, the simple traffic scene is usually focused on a single perceptual object, sparse target distribution, and less research on the complex scene where the target is mixed and densely distributed; The second is that most of them are in the stage of low-level perception, that is to say, the focus of the research is on the detection and recognition of dynamic targets, and less on the intrinsic behavior of cognitive targets. In view of the above problems, this paper studies the dynamic target perception method based on 3D lidar in complex environment, focusing on the perception, perception and cognitive mechanism of dynamic target, taking its state, category and behavior perception as the specific research object. The performance of the system is verified by the data collected in the natural environment. Firstly, based on the two scientific problems of intelligent vehicle environment perception, the research object and scope of dynamic target perception are clarified, and the research ideas from dynamic target state, category to behavior from low-level to advanced perception are put forward. On this basis, the overall research scheme and architecture are constructed. Aiming at the contradiction between accuracy and real-time of target detection under the condition of massive point cloud, the segmentation of point cloud is transformed into image domain and processed by mature methods in image science. Then, in order to overcome the difference of point cloud density at different distances in target recognition, a point cloud density enhancement method is proposed to generate a new target point cloud that meets the requirements of target density. In order to improve the applicability of point cloud features and model classification ability. On this basis, the key state parameters of vehicle target are modeled, and the parameters are optimized by using the tracking method of decision tree-tracking gate and joint probabilistic data association Kalman filter. Finally, a vehicle behavior recognition model based on natural speech recognition is proposed, which is based on the analysis and modeling of vehicle moving behavior. In order to verify the effectiveness of the method, the data collected under the natural traffic environment were tested. The results show that the 3D sensing system can quickly and accurately calculate the state and class parameters of dynamic targets in complex traffic environment. At the same time, the behavior recognition model based on natural speech recognition method can not only help to establish a general framework and system of vehicle behavior recognition, but also can accurately and hierarchically reflect the degree of behavior and improve the depth of perception.
【学位授予单位】:清华大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:U463.6;TN958.98

【相似文献】

相关期刊论文 前10条

1 李国栋,刘春阳,柳长安;一种基于特征的动态目标检测与跟踪算法[J];哈尔滨工业大学学报;2005年07期

2 刘语平;双向制约与激励[J];中国三峡建设;2002年07期

3 周芦芦;曹凯;;基于动态目标位置的车辆弯道保持控制仿真[J];山东理工大学学报(自然科学版);2010年02期

4 陈景涛;杨志刚;程力;王华磊;;运动车辆的视频动态目标检测[J];汽车工程学报;2014年01期

5 龙真真;张策;王维平;张正文;;一种基于数据流聚类的动态目标分群框架[J];上海交通大学学报;2010年07期

6 刘永东,王佳,梁晋文;动态目标全姿态激光跟踪测量[J];激光与红外;1999年03期

7 李莉,段锦,顾玲嘉;一种动态目标检测与跟踪的方法研究[J];长春理工大学学报;2005年03期

8 王伟;李岗;侯亚丽;焦景欣;;动态目标热红外涂层隐身效能测试评价系统[J];探测与控制学报;2012年06期

9 杨洪芹;利用DDE协议获取动态目标跟踪数据[J];大连海事大学学报;1996年04期

10 野舟;米曼;;联合防区外武器C-1打击静态及动态目标的演示试验获得成功[J];飞航导弹;2013年04期

相关会议论文 前6条

1 王坤;王磊;游安清;;基于形殊点的动态目标“定位”方法研究[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年

2 王坤;游安清;贺喜;王磊;;基于动态目标结构特征的姿态实时定位方法[A];第十届全国光电技术学术交流会论文集[C];2012年

3 李刚伟;邱宗明;卢刚;;动态目标三维激光跟踪测量仪[A];制造技术自动化学术会议论文集[C];2002年

4 宋丹;赵保军;;一种基于SIFT算子的动态目标跟踪的改进方法[A];全国第4届信号和智能信息处理与应用学术会议论文集[C];2010年

5 肖作江;安志勇;石丽霞;;基于LabVIEW动态目标发生器稳定性光电检测技术研究[A];2008中国仪器仪表与测控技术进展大会论文集(Ⅰ)[C];2008年

6 韩冰;;小尺寸、新型动态MTF测试设备的研制[A];第十四届全国光学测试学术讨论会论文(摘要集)[C];2012年

相关重要报纸文章 前2条

1 通讯员 周实办;我州全面推行全流程动态目标管理[N];红河日报;2009年

2 通讯员 光兴;成都实行动态目标管理[N];中国房地产报;2003年

相关博士学位论文 前3条

1 赵谦;煤矿井下动态目标视频监测图像处理研究[D];西安科技大学;2014年

2 王肖;复杂环境下智能车辆动态目标三维感知方法研究[D];清华大学;2016年

3 程龙;面向移动设备的动态目标的光场渲染技术研究[D];中国科学技术大学;2009年

相关硕士学位论文 前10条

1 王伟;复杂环境下移动机器人的动态目标检测与跟踪控制研究[D];西安建筑科技大学;2015年

2 洪怡琳;多旋翼飞行器基于单目视觉的动态目标跟踪[D];大连理工大学;2015年

3 赵振杰;视频序列中动态目标的检测、定位与跟踪技术研究[D];南开大学;2015年

4 郭春凤;视频图像序列的动态目标检测新算法研究[D];福州大学;2013年

5 马世强;卡尔曼与均值漂移在动态目标跟踪中的应用研究[D];内蒙古大学;2016年

6 王光彪;基于双目机器人的动态目标检测与跟踪方法研究[D];天津理工大学;2013年

7 叶瑞;基于云台控制的无人车动态目标跟踪[D];西安工业大学;2013年

8 王春辉;跟踪转台检测用动态目标生成技术[D];长春理工大学;2014年

9 闫光;基于多传感器信息融合的动态目标检测与识别[D];北京理工大学;2015年

10 韩雷;基于无线传感器网络的动态目标三维跟踪[D];南京大学;2015年



本文编号:2412965

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2412965.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户80ee4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com