子空间学习若干问题研究及其应用
[Abstract]:Subspace learning is a hot topic in the field of machine learning, which is widely used in computer vision, analytical chemistry, bioinformatics and other fields. For the data with high dimension and few training samples, the commonly used regression, the classification model is often overfitted, and the error of parameter estimation is large and so on. However, although the data is high-dimensional, it may be distributed in a low-dimensional subspace. The regression or classification of the data in this low-dimensional subspace can avoid over-fitting and large error in parameter estimation. Subspace learning is an important way to solve this problem. For specific tasks such as regression, classification and so on, learning the optimal subspace is the core problem of subspace learning. Aiming at the problems of regression, classification and so on, researchers put forward multiple sub-spatial learning models by designing corresponding objective functions and regularization methods of regression coefficients and projection vectors based on various criteria. However, due to the complexity of the specific problems, the authors put forward a multi-sub-spatial learning model. How to design objective function, regression coefficient and projection vector regularization method according to specific regression, classification task and regression coefficient, projection vector to obtain the highest regression, classification accuracy is still a difficult problem in subspace learning. In this paper, several problems of designing optimal objective function, regression coefficient and regularization method of projection vector in the subspace learning theory of work-around in this paper are studied, focusing on minimizing the error classification rate. Minimizing mean square error is the objective learning optimal projection vector, and the subspace modeling with correlation between data is three problems. The research contents and achievements of this paper include the following aspects: 1. In this paper, the problem of optimal projection vector in linear classification problem is studied, and an approximate optimal linear discriminant model is proposed. The existing linear discriminant analysis model does not consider whether the projection vector is optimal and depends on the estimation of the mean value and covariance matrix of the distribution from the sample. The data obeys the Laplacian distribution. The criterion for finding the optimal projection vector in the sense of minimum error rate is analyzed, and the robust linear discriminant analysis model and the solution method of linear programming are given. The model depends on the estimation of mean and mean absolute deviation and is more robust than the estimation of mean and covariance matrix. It is suitable for the case of fewer training samples with noise or outliers. Simulation experiments on the data of Gao Si distribution following Gao Si distribution, Laplacian distribution and Gao Si distribution with missing attributes show that the model has a good classification effect. 2. In this paper, the problem of optimal projection vector in linear regression problem is studied, and an approximate optimal partial least squares model is proposed. In this paper, the relation between mean square error and projection vector is analyzed, and the regression model based on partial least squares frame is given to extract the optimal projection vector. Furthermore, an approximate optimal model is proposed, and the solution method of the model based on generalized eigenvalue decomposition is given. Experiments on the standard library show that the model has a smaller prediction error and uses fewer hidden variables. 3. This paper studies the joint modeling of the correlation between different samples and different features of the same sample, and proposes a multi-task multi-perspective learning model based on regression framework and the corresponding kernel multi-task multi-perspective learning model. The display algorithm is given. The learning model is applied to the problem of video tracking, and the joint modeling of the correlation between adjacent frames and the correlation of multiple features is realized by this model. The experimental results on several standard databases show that the real-time performance and tracking accuracy of the proposed method are obviously improved compared with the existing methods.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP391.41;TP181
【相似文献】
相关期刊论文 前10条
1 陈晓红;陈松灿;;类依赖的线性判别分析[J];小型微型计算机系统;2008年05期
2 刘忠宝;王士同;;改进的线性判别分析算法[J];计算机应用;2011年01期
3 高建强;范丽亚;;模糊线性判别分析中距离对面部识别的影响[J];井冈山大学学报(自然科学版);2012年03期
4 葛熠;王亭亭;韩月;李峰;;基于核双子空间线性判别分析人脸识别方法[J];科技视界;2012年23期
5 任获荣;李春晓;孙建维;秦红波;何培培;高敏;;类依赖增强线性判别分析算法[J];西安电子科技大学学报;2012年05期
6 温凤文;王洪春;;改进的张量线性判别分析[J];黑龙江科技信息;2013年24期
7 赵越;徐鑫;乔利强;;张量线性判别分析算法研究[J];计算机技术与发展;2014年01期
8 赵芳;马玉磊;;基于概率线性判别分析的可扩展似然公式化人脸识别[J];科学技术与工程;2014年06期
9 周大可,杨新,彭宁嵩;改进的线性判别分析算法及其在人脸识别中的应用[J];上海交通大学学报;2005年04期
10 成忠;诸爱士;;一种适于高维小样本数据的线性判别分析方法[J];浙江科技学院学报;2008年02期
相关会议论文 前2条
1 欧阳梅兰;张志敏;陈晨;刘鑫波;梁逸曾;;稀疏线性判别分析法在代谢组学数据研究中的应用[A];中国化学会第29届学术年会摘要集——第19分会:化学信息学与化学计量学[C];2014年
2 张明锦;杜一平;童佩瑾;;基于非相关线性判别分析的分层特征选择方法及其在蛋白质组数据分析中的应用[A];第十届全国计算(机)化学学术会议论文摘要集[C];2009年
相关博士学位论文 前4条
1 任忠国;基于γ特征谱的对象相似性识别技术研究[D];兰州大学;2015年
2 江修保;子空间学习若干问题研究及其应用[D];华中科技大学;2016年
3 刘忠宝;基于核的降维和分类方法及其应用研究[D];江南大学;2012年
4 潘志斌;半监督排序的若干关键问题研究[D];华中科技大学;2014年
相关硕士学位论文 前10条
1 王金贝;基于奇异值分解的不相关线性判别分析的通解与性质[D];郑州大学;2015年
2 林轩;几种分类问题的研究[D];吉林大学;2015年
3 孔昭阳;基于GPU的并行线性判别分析算法研究[D];哈尔滨工业大学;2014年
4 袁愈章;图正则和低秩多标记线性判别分析[D];上海交通大学;2015年
5 张晶;非欧框架下的线性判别分析[D];辽宁师范大学;2015年
6 乔娜娜;基于生物光子学小麦隐蔽性害虫检测机理及分类研究[D];河南工业大学;2016年
7 杜辉;基于二维图像的人脸识别研究[D];江苏大学;2016年
8 刘超;非迭代三维线性判别分析及其在人脸识别中的应用[D];云南财经大学;2016年
9 霍中花;非重叠监控场景下行人再识别关键技术研究[D];江南大学;2016年
10 苗硕;基于L2,1范数和L1范数的鲁棒判别特征提取算法研究[D];西安电子科技大学;2015年
,本文编号:2440920
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2440920.html