经验模态分解中关键问题的优化理论与方法研究

发布时间:2019-03-21 18:04
【摘要】:随着电子测量与信号处理技术的发展,信号的非平稳、非线性特征被广泛地应用在故障诊断、系统辨识和生物医学仪器等领域。能否有效地提取这些特征通常影响着整个系统的性能。信号的时间-频率分布作为一种非平稳非线性特征得到了越来越多的重视。希尔伯特-黄变换(HHT)为提取信号的时间-频率特征提供了一种自适应并有效的手段。HHT方法的核心是一种自适应的信号分解算法,称为经验模态分解(EMD)算法。目前EMD方法缺乏系统的数学框架,导致其存在一系列影响分解质量的关键问题。本论文通过对EMD进行深入研究,重点针对其存在的频率分辨率问题、模态混叠问题和采样率问题建立有效的理论框架并进行优化和改进。取得的主要研究成果为:1.提出一种以输入信号高阶微分过零点时刻作为特征的均值计算方法。在筛分过程中,该方法不通过对极值点插值生成上下包络得到均值,而是通过直接对特征点插值得到均值。为说明特征选择的合理性,对两个命题进行了理论证明。其一,选用信号偶数阶微分过零点作为特征计算得到的均值信号与理想均值信号相关。其二,提高微分阶数能提高EMD的频率分辨率。理论分析表明高阶微分过零点作为一种时间尺度,能够反映线性信号的局部振荡情况。实验结果表明该改进算法能有效地提高EMD方法对线性信号的频率分离能力,性能符合理论预期。2.设计并实现一种非等间隔节点的B样条非线性滤波器,并基于该滤波器提出一种自适应的滤波筛分算法。理论证明了以下四个命题,并作为算法的依据。其一,包络对称或近似对称的信号,其理想均值信号的局部时间尺度信息可以通过其包络时间尺度计算得到。其二,对包络非对称的情况,拐点时间尺度与理想均值信号的时间尺度相关。其三,等间隔B样条最小二乘拟合(简称B样条拟合)具有低通滤波器性质,滤波器的截止频率由节点间距决定。其四,非等间隔B样条拟合具有时变低通滤波器性质,其局部截止频率由局部节点间隔决定。基于以上命题,给出一种基于时变滤波的筛分算法,对非平稳信号有较好的分离效果。3.针对模态混叠问题,首先提出一种根据极值点分布进行自适应拟合迭代的算法。与著名的聚合经验模态分解(EEMD)进行了对比,EEMD虽然能在一定程度上保证分解结果时间尺度的完整性,但是牺牲了EMD方法针对局部时间尺度进行分解的优势,而且耗时巨大。对比分析结果表明,本论文提出的迭代算法不但能有效消除噪声对信号极值点的干扰,而且能很好地保留EMD局部分解的优点。然后,同样针对模态混叠问题,提出一种基于全局时间尺度的均值计算方法。该算法基于本论文的B样条滤波器的截止频率特性理论成果,提出一种三试探尺度理论框架,可用于均值信号的筛选和提取。理论分析表明该改进方法有较好的收敛性。与EEMD进行比较,结果表明本文方法有更高的频率解析精度,对噪声或间断的干扰有更好的抑制性能。4.提出一种对极值点时刻进行重新采样的均值计算方法。与EMD方法相比,该方法不依赖于信号极值点的准确位置和取值,因此不容易受到低采样率的影响。仿真结果表明,该方法能在接近奈奎斯特频率的低采样率下获得较高的性能。与基于插值的解决方案相比,本文方法的精度更高。在低采样率情况下给出本征模态函数(IMF)的补充定义。IMF要求信号的包络必须关于时间轴对称。我们通过分析表明该条件只在采样率较高的场合才成立。结合HHT时频分析方法的本质,使用瞬时带宽对IMF进行补充定义,使IMF在低采样率下也能保证性能。实验结果证实了该定义的正确性。
[Abstract]:With the development of the electronic measurement and signal processing technology, the non-stationary and non-linear features of the signal are widely used in the fields of fault diagnosis, system identification and biomedical instruments. The ability to efficiently extract these features generally affects the performance of the overall system. The time-frequency distribution of the signal has gained more and more attention as a non-stationary non-linear feature. The Hilbert-Huang transform (HHT) provides an adaptive and effective means to extract the time-frequency characteristics of the signal. The core of the HHT method is an adaptive signal decomposition algorithm called the empirical mode decomposition (EMD) algorithm. At present, the EMD method lacks the mathematical framework of the system, resulting in a series of key problems affecting the decomposition quality. In this paper, the EMD is deeply researched, and the effective theoretical framework is set up for the problem of frequency resolution, the problem of mode aliasing and the sampling rate, and the optimization and improvement are made. The main research results are as follows:1. In this paper, a method for calculating the mean value of an input signal high-order differential zero-crossing time is proposed. In the process of screening, the method does not generate the mean value of the upper and lower envelope by the interpolation of the extreme point, but the average value is obtained by directly interpolating the characteristic points. In order to explain the rationality of feature selection, two propositions have been proved. First, the average signal obtained by using the signal even-order differential zero-crossing as the characteristic is correlated with the ideal mean signal. Second, the improvement of the differential order can improve the frequency resolution of EMD. The theoretical analysis shows that the high order differential zero crossing is a time scale and can reflect the local oscillation of the linear signal. The experimental results show that the improved algorithm can effectively improve the frequency separation capability of the EMD method to the linear signal, and the performance is in accordance with the theoretical expectation. A non-uniform B-spline nonlinear filter is designed and implemented, and an adaptive filtering and screening algorithm is proposed based on the filter. The following four propositions are proved and used as the basis of the algorithm. First, the envelope is symmetrical or approximately symmetrical, and the local time scale information of the ideal mean signal can be calculated by its envelope time scale. Secondly, when the envelope is asymmetric, the time scale of the inflection point is related to the time scale of the ideal mean signal. Third, the equal-interval B-spline least square fitting (B-spline fitting) has a low-pass filter property, and the cut-off frequency of the filter is determined by the node spacing. And the local cut-off frequency of the four-and non-equal-interval B-spline fitting has a time-varying low-pass filter property, and the local cut-off frequency is determined by the local node interval. Based on the above proposition, a screening algorithm based on time-varying filtering is presented, which has good separation effect on non-stationary signals. In order to solve the problem of mode aliasing, an algorithm for adaptive fitting iteration based on the distribution of the extreme points is proposed. In contrast to the well-known empirical mode decomposition (EEMD), EEMD can ensure the completeness of the time scale of the decomposition results to a certain extent, but the advantage of EMD method for the decomposition of the local time scale is sacrificed, and the time consuming is huge. The results of the comparative analysis show that the iterative algorithm proposed in this paper can not only effectively eliminate the interference of the noise to the extreme point of the signal, but also can well retain the local decomposition of the EMD. Then, a method for calculating the mean time scale based on the global time scale is proposed. Based on the theoretical results of the cut-off frequency characteristic of the B-spline filter in this paper, a three-probe-scale theoretical framework is proposed, which can be used to filter and extract the mean signal. The theoretical analysis shows that the improved method has better convergence. Compared with EEMD, the results show that the method has higher frequency resolution precision, and can better restrain the noise or intermittent interference. This paper presents a method for calculating the mean value of re-sampling at the time of the extreme point. Compared with the EMD method, the method does not depend on the accurate position and the value of the signal extreme point, so that the method is not easy to be affected by the low sampling rate. The simulation results show that the method can obtain higher performance at a low sampling rate close to the Nyquist frequency. The accuracy of this method is higher as compared to an interpolation-based solution. An additional definition of the eigenmode function (IMF) is given at a low sampling rate. The IMF requires the envelope of the signal to be axisymmetric with respect to time. The analysis shows that the condition is only established when the sampling rate is high. In combination with the nature of the HHT time-frequency analysis method, the IMF is defined by the instantaneous bandwidth, so that the IMF can guarantee the performance at a low sampling rate. The experimental results confirm the correctness of the definition.
【学位授予单位】:西安电子科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN713;TN911.6

【相似文献】

相关期刊论文 前10条

1 王秋生;段丹辉;;经验模态分解的边界效应处理技术[J];计算机测量与控制;2006年12期

2 冯志华;朱忠奎;刘刚;伍小燕;;经验模态分解方法的小波消失现象[J];数据采集与处理;2006年04期

3 宋立新;王祁;王玉静;梁X;;具有间断事件检测和分离的经验模态分解方法[J];哈尔滨工程大学学报;2007年02期

4 刘小峰;秦树人;柏林;;基于小波包的经验模态分解法的研究及应用[J];中国机械工程;2007年10期

5 胡维平;莫家玲;龚英姬;赵方伟;杜明辉;;经验模态分解中多种边界处理方法的比较研究[J];电子与信息学报;2007年06期

6 胡维平;杜明辉;;信号采样率对经验模态分解的影响研究[J];信号处理;2007年04期

7 杨智春;谭光辉;;一种基于样条插值的经验模态分解改进算法[J];西北工业大学学报;2007年05期

8 杨彩红;张郁山;;基于折线包络的经验模态分解方法[J];国际地震动态;2008年11期

9 张西良;万学功;李萍萍;张建;徐云峰;;动态称量经验模态分解数据处理方法[J];江苏大学学报(自然科学版);2008年06期

10 李洪;郝豪豪;孙云莲;;具有独立分量的经验模态分解算法研究[J];哈尔滨工业大学学报;2009年07期

相关会议论文 前10条

1 秦毅;秦树人;毛永芳;;正交经验模态分解及其快速实现[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年

2 秦毅;秦树人;毛永芳;;正交经验模态分解及其快速实现[A];第九届全国振动理论及应用学术会议论文集[C];2007年

3 杨永锋;;经验模态分解与非线性分析的协同研究[A];第四届全国动力学与控制青年学者研讨会论文摘要集[C];2010年

4 侯文文;邹俊忠;刘未来;;基于经验模态分解的眼电伪差去除研究[A];上海市化学化工学会2010年度学术年会论文集(自动化专题)[C];2010年

5 李关防;许春雷;惠俊英;;基于经验模态分解的特征提取算法研究[A];中国造船工程学会电子技术学术委员会2011年海战场电子信息技术学术年会论文集[C];2011年

6 薛志宏;李广云;周蓉;;一种基于经验模态分解的信号降噪方法[A];全国工程测量2012技术研讨交流会论文集[C];2012年

7 张飞涟;刘严萍;;经验模态分解与神经网络方法在降水预测领域的应用研究[A];中国系统工程学会第十八届学术年会论文集——A01系统工程[C];2014年

8 康春玉;章新华;;一种基于经验模态分解的信号降噪方法[A];中国声学学会2007年青年学术会议论文集(下)[C];2007年

9 辛鹏;辛雷;蔡国伟;李晓琦;;一种基于经验模态分解与支持向量机的电力系统短期负荷预测新方法[A];第十一届全国电工数学学术年会论文集[C];2007年

10 郝文峰;骆英;顾建祖;;基于经验模态分解-支持向量机的玻璃幕墙开胶损伤预测研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年

相关博士学位论文 前10条

1 黎恒;经验模态分解中关键问题的优化理论与方法研究[D];西安电子科技大学;2016年

2 葛光涛;二维经验模态分解研究及其在图像处理中的应用[D];哈尔滨工程大学;2009年

3 孙晖;经验模态分解理论与应用研究[D];浙江大学;2005年

4 张继红;经验模态分解及径向基函数的一些应用研究[D];大连理工大学;2012年

5 熊卫华;经验模态分解方法及其在变压器状态监测中的应用研究[D];浙江大学;2006年

6 杨贤昭;基于经验模态分解的故障诊断方法研究[D];武汉科技大学;2012年

7 高静;经验模态分解的改进方法及应用研究[D];北京理工大学;2014年

8 陈志刚;经验模态分解与Savitzky-Golay方法的自适应遥感影像融合[D];华东师范大学;2010年

9 周义;快速二维经验模态分解和相位追踪方法及其在导波无损检测中的应用[D];上海交通大学;2014年

10 石志晓;时频联合分析方法在参数识别中的应用[D];大连理工大学;2005年

相关硕士学位论文 前10条

1 杨U唝~;基于经验模态分解的城市供水水质异常事件检测方法研究[D];浙江大学;2016年

2 郭学雯;利用经验模态分解方法研究新型热中子探测器数据周期性[D];河北师范大学;2016年

3 杨勤甜;基于经验模态分解和粗糙集属性约简的超声缺陷信号分类识别研究[D];南昌航空大学;2016年

4 李超;透平机组故障特征提取技术研究与系统开发[D];天津工业大学;2016年

5 卢丹丹;基于EEMD的CPI与PPI关系的结构分析及传导机制研究[D];暨南大学;2016年

6 邹志国;基于经验模态分解的多分量信号分析方法研究[D];哈尔滨工业大学;2016年

7 钱荣荣;基于经验模态分解的动态变形数据分析模型研究[D];中国矿业大学;2016年

8 黄阳;基于经验模态分解的轴承故障诊断系统研究[D];东北石油大学;2016年

9 杨彩红;基于折线包络的经验模态分解方法及其应用[D];天津大学;2007年

10 付晓波;经验模态分解法理论研究与应用[D];太原理工大学;2013年



本文编号:2445188

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2445188.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户59e19***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com