Ⅱ-Ⅵ族三元合金半导体热力学性质的第一性原理研究
[Abstract]:ZnO and other II-VI semiconductor materials are widely used in the fields of photoelectric, piezoelectric, pyroelectric, ferroelectric and the like due to its excellent performance. As the phenomenon of ZnO thin film excited near-ultraviolet laser emission at room temperature has been reported in the 1990s, ZnO as a new type of photoelectric information function material has caused a research upsurge. However, it is necessary to solve the two key problems of the energy band engineering (energy gap regulation) and p-type doping of ZnO. The energy band regulation of ZnO is generally realized by the substitution of equivalent ions, for example, the cation part is substituted for Zn to form a ternary alloy of MeZnO (Me = Mg, Be, Cd, etc.) or an anion-substituted O to form a ternary alloy of ZnOX (X = S, Se, Te, etc.). The results show that the equivalent cation part is substituted for Zn-formed MeZnO (Me = Be, Mg, Cd, etc.), and the solid solubility of Me is limited. In theory, there are few reports on the solid solution properties of the II-VI ternary alloy. In this paper, the thermodynamic properties of CdxZn1-xO, BxZn1-xO, MgxZn1-xO, CdO1-xSx and ZnS1-xSe and other II-VI ternary alloy solid solutions are studied by the first principle calculation and the group expansion method. The formation energy and phase diagram of CdxZn1-xO, BxZn1-xO, MgxZn1-xO, CdO1-xSx and ZnS1-xSx are analyzed. The main contents and conclusions are as follows: (1) The formation energy and phase diagram of wurtzite (WZ) and rock salt (RS) CdxZn1-xO ternary alloy are calculated. The formation energy of most of the CdxZn1-xO alloy configurations was found to be greater than zero by the formation of energy, indicating that ZnO and CdO were difficult to combine to form a solid solution at low temperatures. Two metastable phase structures of the WZ-CdxZn1-xO alloy (Cd1/ 3Zn2/ 3O and Cd2/ 3Zn1/ 3O) were further calculated. The lattice constants a and c, the bond length, the O-Zn (Cd)-O bond angle and the electronic structure of the two metastable phases of Cd1/ 3Zn2/ 3O and Cd2/ 3Zn1/ 3O are found, and the lattice constants a and c are gradually increased with the increase of the content of Cd in the WZ-CdxZn1-xO alloy, but the ratio c/ a of the lattice constant is gradually reduced. Similarly, with the increase of Cd doping, the size of the O-Zn (Cd)-O bond and the band gap are gradually reduced. The effective group interaction coefficient of wurtzite and the structure of CdxZn1-xO is calculated and analyzed, and the group of two atoms is found to be dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation energy. By calculating the two-phase phase diagram of the WZ-CdxZn1-xO and RS-CdxZn1xO alloys, the solid solubility of Cd in WZ-ZnO at 1600 K was 0.13, but the solid solubility of Zn in the RS-CdO was 0.01. (2) The formation energy and the thermodynamic phase diagram of wurtzite and sphalerite structure (ZB) BexZn1-xO were calculated. The formation energy of most of the BexZn1-xO alloy configurations was found to be greater than zero by the formation of energy, indicating that ZnO and BeO were difficult to combine at low temperature to form a solid solution. The effective group interaction coefficient calculation of WZ-BexZn1-xO and ZB-BexZn1-x shows that, for the WZ-BexZn1-xO, the group of the two atoms and the four atoms take the leading role in the effective group interaction coefficient, indicating that the group of the two atoms and the four atoms has the greatest contribution to the formation energy. For ZB-BexZn1-xO, the two-atom group is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation energy. The phase diagram of wurtzite and sphalerite BexZn1-xO shows that the phase diagram of wurtzite and sphalerite BexZn1xO has a great effect on the phase diagram of wurtzite and sphalerite. The lattice vibration has a great influence on the solid solubility of Be (Zn) in ZnO (BeO). (3) The formation energy and the thermodynamic phase diagram of the MgxZn1-xO alloy of wurtzite and rock salt are calculated. By calculating the formation energy of MgxZn1-xO, it is found that the formation energy of most of the MgxZn1-xO alloy configuration at low temperature can be less than zero, indicating that ZnO and MgO are easy to bond to form a solid solution at low temperature. The effective group interaction coefficients of wurtzite and halite structural MgxZn1-xO were also calculated. For MgxZn1-xO by the effective group interaction coefficient, the group of two atoms is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation of the MgxZn1-xO. The two-phase phase diagram of WZ-MgxZn1-xO and RS-MgxZn1-xO has found that Mg is hard to be dissolved in the wurtzite type ZnO, and the Zn is more easily soluble in the MgO of the rock salt ore structure. (4) The formation energy and the thermodynamic phase diagram of wurtzite and halite structure CdO1-xSx are calculated. By calculating the formation energy of CdO1-xSx, the formation energy of most of the CdO1-xSx alloy configurations is found to be greater than zero, indicating that CdO and CdS are difficult to combine to form a solid solution at low temperatures. The effective group interaction coefficients of wurtzite and halite structures, CdO1-xSx, are also calculated. The two-atom group is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation of the CdO1-xSx. The two-phase phase diagram of WZ-CdO1-xSx and RS-CdO1-xSx was calculated and analyzed. (5) The thermodynamic properties of the formation energy and phase diagram of WZ-ZnS1-xSx and ZB-ZnS1-xSx are studied. By calculating the formation energy of ZnS1-xSx of wurtzite and sphalerite structure, the formation energy of most of the ZnS1-xSx alloy configurations is found to be greater than zero, indicating that ZnS and ZnSe are difficult to combine to form a solid solution at low temperature. The analysis of the effective group interaction coefficient shows that the group of two atoms is dominant in the effective group interaction coefficient, indicating that the two-atom group has the greatest contribution to the formation energy. The x-T phase diagram of ZnS1-xSx alloy is calculated and analyzed. It is found that the solid solubility of Se in ZnS is substantially the same as that of S in ZnSe, whether wurtzite structure or sphalerite structure alloy. For the above-mentioned semiconductor alloy of the five systems, the formation energy calculated by the expansion method of the group and the formation energy calculated by the first principle are basically the same, so that the validity and the feasibility of the formation energy of the alloy are calculated by the method of the group expansion.
【学位授予单位】:湖北大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN304
【相似文献】
相关期刊论文 前10条
1 江勇;;掺杂ZnO的第一性原理计算[J];科协论坛(下半月);2010年11期
2 袁娣;罗华峰;黄多辉;;C掺杂实现p型AlN的第一性原理计算[J];宜宾学院学报;2010年12期
3 刘慈仁;雷敏生;;ZnO第一性原理计算中两种赝势方法之比较[J];江西科学;2006年06期
4 汝强;胡社军;邱秀丽;;第一性原理计算锐钛矿型TiO_2电子结构及力学性能分析[J];华南师范大学学报(自然科学版);2009年04期
5 郝军华;吴志强;王铮;金庆华;李宝会;丁大同;;加压下ZnO结构相变和电子结构的第一性原理计算[J];计算物理;2010年05期
6 赵慰;赵永华;刘晓辉;何力新;;第一性原理计算软件包在GPU集群上的加速[J];计算机科学与探索;2014年08期
7 贾伟;王进;韩培德;党随虎;迟美;刘旭光;许并社;;AlN(10-10)表面结构的第一性原理计算[J];材料导报;2007年06期
8 郭连权;刘嘉慧;宋开颜;张金虎;马贺;武鹤楠;李大业;;晶体Si能带的密度泛函及第一性原理计算[J];沈阳工业大学学报;2009年03期
9 吕泉;黄伟其;王晓允;孟祥翔;;Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析[J];物理学报;2010年11期
10 邵秀琴,朱俊,赵伟;用第一性原理计算硅单空位缺陷[J];武汉科技学院学报;2001年03期
相关会议论文 前10条
1 吴忠庆;Renata Wentzcovitch;;高温高压弹性的第一性原理计算新方法及应用[A];中国地球物理学会第二十七届年会论文集[C];2011年
2 赵丽军;张小超;樊彩梅;贾金田;梁镇海;韩培德;;纳米钛酸镍材料结构模拟及第一性原理计算[A];第十一届全国计算(机)化学学术会议论文摘要集[C];2011年
3 罗晓光;李金平;张幸红;韩杰才;董善亮;;第一性原理计算氯化钠型过渡金属硼化物的弹性性质[A];中国力学学会学术大会'2009论文摘要集[C];2009年
4 陈灏;蒋锋;周永西;梁云烨;R.Note;H.Mizuseki;Y.Kawazoe;;分子电子学和第一性原理计算(英文)[A];量子电荷和自旋输运研讨会论文集[C];2005年
5 董锦明;翁红明;Y.Kawazoe;T.Fukumura;M.Kawasaki;;磁光效应和材料磁光性质的第一性原理计算[A];量子电荷和自旋输运研讨会论文集[C];2005年
6 秦敬玉;厉瑞艳;杨磊;;基于逆蒙特卡罗和第一性原理计算联合的Fe-B-Si非晶结构分析[A];第三届散裂中子源多学科应用研讨会论文集[C];2006年
7 姚超;吴忠庆;;第一性原理计算高温高压下Magnesite的状态方程、弹性、波速和密度[A];2014年中国地球科学联合学术年会——专题11:深部高压结构、过程及地球物理响应论文集[C];2014年
8 张乔丽;袁大庆;张焕乔;范平;左翼;郑永男;K.Masuta;M.Fukuda;M.Mihara;T.Minamisono;A.Kitagawa;朱升云;;P在α-Al_2O_3中电场梯度的第一性原理计算[A];第十四届全国核结构大会暨第十次全国核结构专题讨论会论文摘要[C];2012年
9 侯士敏;;纳电子器件电学特性的第一性原理计算[A];2005年纳米和表面科学与技术全国会议论文摘要集[C];2005年
10 赵宪庚;;院长致辞[A];中国工程物理研究院科技年报(2012年版)[C];2012年
相关博士学位论文 前10条
1 蒋好;铁基超导体的晶体化学以及第一性原理计算并辅助探索新型超导材料[D];浙江大学;2015年
2 朱慧平;半导体中缺陷及电子特性的第一性原理研究[D];南京大学;2015年
3 黄世娟;正电子理论计算及其在分析材料微结构中的应用[D];中国科学技术大学;2015年
4 戴足阳;高分辨小分子光谱计算研究[D];清华大学;2014年
5 胡麟;一些二维材料的第一性原理计算与设计[D];中国科学技术大学;2016年
6 张滨;Fe-Cr合金溅射纳米晶薄膜腐蚀电化学行为的XPS及第一性原理计算的研究[D];大连理工大学;2016年
7 罗明海;Ⅱ-Ⅵ族三元合金半导体热力学性质的第一性原理研究[D];湖北大学;2016年
8 杨军;导电性超硬材料的第一性原理计算研究[D];上海交通大学;2011年
9 何建平;钛酸锶钡结构及其极化特性的第一性原理计算与实验研究[D];华中科技大学;2012年
10 冯页新;二维碳基材料的催化特性和生长:第一性原理计算研究[D];南开大学;2013年
相关硕士学位论文 前10条
1 邱烨;用第一性原理计算研究M_3AX_2相材料的点缺陷[D];兰州大学;2015年
2 李婷婷;铍和氧化铍电子、弹性性质的第一性原理计算[D];宁夏大学;2015年
3 陈浩;压力场中锗光学性质的第一性原理计算与实验分析[D];武汉理工大学;2015年
4 李小波;钇稳定氧化锆空位型缺陷的第一性原理计算[D];湖南师范大学;2015年
5 彭思雯;Mg-Zn系镁合金第一性原理计算[D];沈阳工业大学;2016年
6 崔莉;VN/TiN体系的修正嵌入原子相互作用势函数的研究[D];重庆大学;2015年
7 周,
本文编号:2484122
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2484122.html