基于状态估计的多方法融合的故障预测算法研究
[Abstract]:With the improvement of the safety and reliability requirements of the system performance, it is hoped that the information of the future development of the fault can be obtained when the system has only slight abnormal changes, so as to control the continuous development of the fault and further reduce the possibility of the accident. Compared with the traditional scheme maintenance system, the prediction and maintenance technology based on the fault prediction can improve the utilization rate of the equipment, thereby reducing the maintenance cost and the production cost. Therefore, the research and development of the fault prediction technology is of great theoretical and practical value. The fault prediction algorithm usually estimates the state of the system firstly through the monitoring information of the state and the known historical operation data, and then the evolution trend of the system state is predicted. Based on this, the research contents in this paper are divided into two parts. The first part analyzes the influence of the system's non-linearity, the model uncertainty, the multiple measurement and the sampling way of the sensors on the system performance, and studies the state estimation of several kinds of stochastic uncertain dynamic systems. In the second part, when the model of the known system is known, the operation state of the system can be estimated effectively based on the method of the mechanism model, but it is very difficult to set up an accurate mathematical model for the complex industrial system. The data-driven method can utilize the off-line, on-line data and other knowledge of the system to realize the prediction and diagnosis of the fault. However, in addition to the historical data which needs the normal operation of the system, the data-driven fault prediction method also needs the data in the abnormal operation of the system, so that the operation data under the system fault condition often needs extremely high cost, and is even catastrophic. In this paper, the proper framework of two kinds of methods is studied, the existing mechanism knowledge and historical data are fully used, and the state estimation method of dynamic data driving is studied to improve the prediction precision. The specific research work in this paper is summarized as follows: for the time-varying random nonlinear system state estimation problem, the effect of multiplicative noise, parameter uncertainty and multiple measurement data loss on the performance of the filter is comprehensively considered, and the filter with the iteration form is designed under the meaning of the minimum variance. so that the filter not only has the robustness to the uncertainty of the system parameters, but also has non-vulnerability to the change of the filter parameters, The design problem of the filter is studied. At each sampling time, the upper bound of the error covariance of the minimum state estimation error is realized by designing the appropriate filter gain matrix. The filter used has the form of iterative recursion, and can be calculated on-line. At the same time, the estimation error of the system is analyzed, and the mean-square boundedness of the estimation error is proved under certain conditions by using the random analysis theory. Aiming at the problem that the model-based filtering method is over-dependent on the established system model, and the prediction stability and the accuracy of the data driving method are poor, a method for predicting the fusion of the unscented Kalman filter and the correlation vector machine is proposed. the influence of long-term and short-term data on the future trend is comprehensively considered, the filter residual term of the future time obtained by the correlation vector machine is dynamically weighted with the short-term residual term data, and the dynamic adjustment and the prediction update to the filter are realized in the unscented Kalman filter, So as to improve the accuracy of the prediction. Aiming at the problem that the prediction accuracy of the medium/ long time span is low, meanwhile, the adverse effect of the prediction value error of the data driving method with the increase of the prediction step size on the fusion algorithm is improved, and the adaptive weight term is introduced in the fusion method, So that the effect of the prediction value of the data driving algorithm on the filtering update is corrected. In addition, taking into account the change of the measured value of the system, the measurement noise of the system is constantly changing in the prediction process, and the updating of the system model is realized by adopting a dynamic updating algorithm of the system measurement noise, so that the accuracy of the prediction is further improved. Finally, the research work of the full text is summarized, and the next research project is expected.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP277
【相似文献】
相关期刊论文 前10条
1 谢小莉;电力系统遥测校正和状态估计的综合运用[J];电网技术;1996年05期
2 刘浩;电力系统状态估计、检测及辨识[J];电力系统及其自动化学报;1999年04期
3 张黎;;小议状态估计遥测合格率在地区电网中的调试和提高[J];电子世界;2014年01期
4 张黎;陆炜;;地区电网状态估计调试中典型问题分析[J];电子世界;2014年03期
5 陈子青,石增钧,林曙光;采用状态估计 提高监测质量[J];山东电力高等专科学校学报;2000年02期
6 应春晖;;提高清远地调状态估计软件运行率的措施[J];广东电力;2007年08期
7 赵红嘎,薛禹胜,高翔,潘勇伟,岑宗浩,李碧君;量测量的时延差对状态估计的影响及其对策[J];电力系统自动化;2004年21期
8 田江;钱科军;梁锋;;分布式状态估计技术在智能变电站的应用[J];电网与清洁能源;2013年09期
9 刘浩,顾一中;状态估计中不良数据的混合检测辨识程序设计[J];大电机技术;2001年01期
10 吴为麟,侯勇,方鸽飞;基于支路电流的配电网状态估计[J];电力系统及其自动化学报;2001年06期
相关会议论文 前10条
1 徐兴华;陈万里;;地调状态估计实用化探讨[A];华东六省一市电机工程(电力)学会输配电技术研讨会2002年年会山东电机工程学会交流论文集[C];2002年
2 郭金莲;范晓丹;赵洪山;;分布式状态估计算法的研究[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
3 刘耀年;郝静;;基于分布式抗差加权最小二乘法的状态估计[A];第十一届全国电工数学学术年会论文集[C];2007年
4 刘顺明;刘耀年;于贺;汤德海;;基于抗差加权最小二乘法的分布式状态估计[A];高效 清洁 安全 电力发展与和谐社会建设——吉林省电机工程学会2008年学术年会论文集[C];2008年
5 何青;欧阳红林;杨民生;童调生;;基于最优定界椭球的自适应集员状态估计[A];2004全国测控、计量与仪器仪表学术年会论文集(上册)[C];2004年
6 郭晓林;曹军海;贾小平;;模糊状态估计在机动目标跟踪中的应用[A];1997中国控制与决策学术年会论文集[C];1997年
7 林桂华;张艳军;周苏荃;;基于量测变换的混合量测状态估计算法[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
8 景渤雯;赵璐;张雨生;;基于PMU的状态估计研究现状及发展展望[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
9 彭云辉;缪栋;刘云峰;;SR-UKF在状态估计中的应用[A];2006中国控制与决策学术年会论文集[C];2006年
10 王正志;肖齐英;;部分参数不准确的线性系统H_∞状态估计滤波问题[A];1993年控制理论及其应用年会论文集[C];1993年
相关博士学位论文 前10条
1 王吉华;多轴转向车辆状态估计与控制研究[D];南京航空航天大学;2013年
2 Sideig Abd elrhman Ibrahim Dowi;PMU测量单元对电力系统动态状态估计影响研究[D];华北电力大学;2015年
3 隋天举;网络化线性系统状态估计问题研究[D];浙江大学;2017年
4 郑秀娟;基于状态估计的多方法融合的故障预测算法研究[D];华中科技大学;2016年
5 任江波;电力系统过程状态估计研究[D];哈尔滨工业大学;2007年
6 陈芳;电网状态估计及其扩展的理论研究[D];山东大学;2010年
7 畅广辉;基于混合量测的电力系统分布式状态估计研究[D];武汉大学;2009年
8 王永;互联电网分布式状态估计和混合量测状态估计研究[D];哈尔滨工业大学;2008年
9 白宏;基于PMU量测信息的面向过程状态估计研究[D];哈尔滨工业大学;2008年
10 黄彦全;电力系统状态估计若干问题的研究[D];西南交通大学;2005年
相关硕士学位论文 前10条
1 王珊珊;利用支路信息进行电力网络拓扑辨识[D];郑州大学;2015年
2 张娜;电流推算法及其与新息图相结合的状态估计研究[D];哈尔滨工业大学;2015年
3 沈豪栋;一种基于参数修正的区域性电网状态估计改进方法[D];上海交通大学;2014年
4 胡晓艳;分布式平台下的配电网状态估计研究[D];华北电力大学;2015年
5 贾楠;基于WAMS的电力系统状态估计及其应用[D];华北电力大学;2015年
6 白铎;智能电网状态估计及性能分析[D];电子科技大学;2015年
7 安维亮;离散时间复杂网络的状态估计[D];南京邮电大学;2015年
8 沈超;自愈控制下电网状态估计的研究[D];南京邮电大学;2015年
9 邳浚哲;不良数据检测辨识及提高状态估计合格率的方法研究[D];华北电力大学;2015年
10 张鹏飞;离散时间随机系统的状态估计与最优控制器设计[D];青岛科技大学;2015年
,本文编号:2498899
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2498899.html