高速轻型并联机器人集成优化设计与控制
[Abstract]:The parallel robot has the advantages of large load self-weight ratio, high rigidity and high precision. With the increasing demand of production efficiency in the modern industry, the parallel robot has been applied to the high-speed grinding, handling and assembly, in order to reduce the production cost of the robot and reduce the energy consumption. The modern design method considering the light weight has been applied to the development of the robot. In the high-speed operation, the light-weight structure usually introduces the elastic deformation and vibration, and when the traditional analysis and control method for the rigid robot is adopted, the tracking accuracy and the dynamic performance of the robot cannot be ensured. In order to solve the common problems of parallel robot in high-speed operation, a three-RRR parallel robot with a typical structure is used as the object, and the rigid-flexible coupling power modeling of parallel robot designed for the control system is carried out, and the comprehensive mechanism is optimized. The integration and optimization design of the parameter matching and control system parameters of the drive and the traditional part are adjusted, and the performance test and the experimental research are carried out based on the model-based trajectory optimization and control research. Firstly, the kinematics and rigid body dynamics of the 3RRR parallel robot are modeled. Based on this, the rigid character of the end of the rod is considered from the basic assumption of the Euler beam, and the finite element of curvature (CFE, Curvature based final element) is used to model the rod. In this paper, the conventional cantilever beam and simply-supported beam model in the rod of the parallel robot are derived, and the improved curvature finite element (ICFE) method is proposed in consideration of the rigidity of the end of the rod. According to the derived rod model and the small deformation hypothesis, the modeling method of the elastic displacement of the rod and the coupling motion of the rigid body of the robot is proposed. Based on the above model and the Kane equation, the rigid-flexible coupling dynamics model of the 3RRR parallel mechanism is established. In order to validate the derived dynamic model, the modal and acceleration response are analyzed, and the calculated value of the derived model is compared with the ABAQUS imitation true value, and the model is simplified according to the modal analysis. The results show that with the consideration of the characteristic of the end of the rod, the result of modal analysis and acceleration response analysis is significantly improved with the results of the ABAQUS simulation, and the iteration of the rigid-flexible coupling motion equation is avoided because of the reasonable simplification of the model and the solution. The model of this paper guarantees higher calculation accuracy and calculation efficiency. In order to realize the good comprehensive performance of the high-speed parallel robot, the integrated optimization design method of the integration of the mechanism optimization, the parameter matching of the drive transmission components and the parameter adjustment of the control system is put forward. in ord to meet that requirement of high-speed operation, the kinematic and dynamic indexes of global condition number, speed performance, acceleration capability and fundamental frequency are taken into account in the optimization of the mechanism, and the constraint model and the parameter library are established to ensure the economic and the parameter matching of the drive and the transmission component, and the selection cost is the optimization target; In order to obtain high-precision control performance, the control algorithm of dynamic feedforward and PD is designed, and the tracking error of the system is selected as the optimization target. So as to establish an optimization model containing the parameters of the mechanism, the parameters of the drive and the transmission components and the parameters of the control system, and the non-dominant genetic algorithm NSGAII is used for solving the model, and finally, the integrated optimization design of the high-speed parallel robot is finished. The optimization results show that the integrated optimization design effectively improves the comprehensive performance of the high-speed parallel robot. In order to restrain the elastic displacement (FD, flexible displacement) of the high-speed parallel robot and the residual vibration (RV), this paper, from the point of the trajectory planning, considers the flexibility of the rod. The problem of residual vibration suppression and elastic displacement limitation for a given track and point-to-point rapid positioning is studied. Aiming at the problem of residual vibration suppression in a given track, considering the characteristics of the change of the frequency of each step of the parallel robot along with the position, the multi-modal input shaping (IS) and the particle swarm optimization (PSO) and the control are combined, and the residual vibration is established as an optimization target. The parameter of the multi-modal input shaper is the optimization model of the optimization variable, and the control model is optimized off-line by using the PSO. The simulation results show that the optimized shaper can obviously restrain the residual vibration, and the residual vibration is further reduced with the increase of the number of the shaper, and the problem of large calculation amount brought by the prior method to the real-time updating of the parameter of the shaper is avoided. for the fast point-to-point motion, the time optimal planning and the multi-mode input shaping are combined, a two-step optimization method is proposed, and the time optimal problem is firstly solved by adopting a section pseudo-spectrum method (GPM, Gauss pseudo-spectrum method), The results show that the two-step optimization method achieves the limit of the residual vibration and the elastic displacement when the time is optimal. In order to solve the problem of tracking control of high-speed light (HSLW, high-speed and light-weight) parallel robot with flexible link, a compound control algorithm based on integral manifold and high gain observer is proposed. firstly, a small parameter is introduced according to a stiffness matrix, a rigid-flexible coupling dynamic model is reduced to a fast and slow two subsystems based on an integral manifold, At the same time, considering the influence of the elastic displacement of the rod on the end track, the correction moment is designed, and the elastic compensation of the elastic displacement of the rod on the end movement of the robot is realized. The rapid sub-system is controlled by a sliding mode variable structure, so that the manifold is established. In order to solve the problem that the rate of change of curvature cannot be measured directly, a high-gain observer is introduced and the stability is proved. For the above-mentioned compound control algorithm, the stability of the whole system is proved, and the selection range of the small parameters is given. Finally, in order to verify the effectiveness of the compound control algorithm, the design algorithm is compared with the singular perturbation and the inversion control algorithm based on the rigid body dynamics. The simulation results show that, In this paper, the compound control method based on the integral manifold and the observer has obvious advantages in the aspects of vibration suppression and track tracking. In order to verify the above-mentioned theoretical research, the design of the 3RRR parallel robot and the selection of the drive and transmission components are carried out with reference to the optimized design results, and the control system is designed by the control architecture of the industrial personal computer, the real-time operating system and the high-speed communication bus. In this paper, a laser tracker is used to test the repeated precision of the robot, and the model test and the acceleration response test are carried out to the system by using the LMS vibration tester to verify the modeling accuracy. In this paper, the planning method based on multi-mode input shaping and PSO and the trajectory planning method based on the segmentation pseudo-spectrum method and the multi-mode input shaping are verified.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP242
【相似文献】
相关期刊论文 前10条
1 赵新华;并联机器人精度分析与综合研究取得突破[J];天津科技;2005年01期
2 刘善增;余跃庆;杜兆才;杨建新;;并联机器人的研究进展与现状(连载)[J];组合机床与自动化加工技术;2007年08期
3 陈峰;耿永锋;;6-6型绳牵引并联机器人的方位空间研究[J];南京理工大学学报(自然科学版);2007年06期
4 刘辰;赵升吨;;并联机器人结构及驱动方式合理性的探讨[J];机械科学与技术;2013年06期
5 ;中国首个3D打印并联机器人在重庆诞生[J];机械工程师;2014年01期
6 ;中国首个3D打印并联机器人研制成功 成本仅十万元[J];自动化博览;2013年12期
7 ;重庆设计出3D打印并联机器人[J];机器人技术与应用;2013年06期
8 赵铁石,黄真;欠秩空间并联机器人输入选取的理论与应用[J];机械工程学报;2000年10期
9 曹清林,岑向东,杨玉萍,沈世德;一种线性平面并联机器人机械系统的设计[J];南通工学院学报;2000年S1期
10 金振林,高峰;一种正交并联机器人的灵巧度指标及其分布[J];机械设计;2001年07期
相关会议论文 前10条
1 贺利乐;段志善;;并联机器人的动态性能及控制方法的研究现状与展望[A];振动利用技术的若干研究与进展——第二届全国“振动利用工程”学术会议论文集[C];2003年
2 高峰;;并联机器人应用及其机构的创新[A];第十二届全国机构学学术研讨会论文集[C];2000年
3 孙立宁;刘彦武;曲东升;李长峰;;靶定位并联机器人控制研究[A];第二十六届中国控制会议论文集[C];2007年
4 陈文家;陈书宏;赵明扬;;一种用于加工的新型4自由度并联机器人[A];2001年中国智能自动化会议论文集(上册)[C];2001年
5 王志峰;吴强;王占林;付永领;;离散微分跟踪器应用于并联机器人单通道控制[A];中国航空学会液压气动专业2005年学术讨论会论文集[C];2005年
6 王志峰;吴强;王占林;付永领;;离散微分跟踪器应用于并联机器人单通道控制[A];中国航空学会控制与应用第十二届学术年会论文集[C];2006年
7 杨廷力;金琼;刘安心;沈惠平;姚芳华;;基于单开链单元的两平移两转动输出并联机器人机型设计[A];第十三届全国机构学学术研讨会论文集[C];2002年
8 张旭;裴忠才;;液压6自由度并联机器人的控制系统研究[A];第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集[C];2008年
9 郭希娟;黄真;;并联机器人加速度的各向同性[A];第十二届全国机构学学术研讨会论文集[C];2000年
10 张建明;王宁;王树青;;使用模糊转换器的神经元非模型控制及在液压并联机器人中的应用[A];1998年中国控制会议论文集[C];1998年
相关重要报纸文章 前2条
1 记者 周芹 张亦筑;我市研发出国内首台3D打印并联机器人[N];重庆日报;2013年
2 记者 王阳;“并联机器人”研发形成体系[N];上海科技报;2014年
相关博士学位论文 前10条
1 苏宇;绳牵引并联机器人的力学分析与性能优化[D];西安电子科技大学;2014年
2 刘鹏;柔索牵引并联机器人力学分析及稳定性评价[D];西安电子科技大学;2015年
3 张泉;3-PRR柔性并联机构平台的动力学建模及主动振动控制[D];南京航空航天大学;2014年
4 陈正升;高速轻型并联机器人集成优化设计与控制[D];哈尔滨工业大学;2016年
5 刘善增;三自由度空间柔性并联机器人动力学研究[D];北京工业大学;2009年
6 李艳;二自由度冗余驱动并联机器人的动力学建模及控制研究[D];山东大学;2010年
7 李海虹;一种含柔性杆件的高速并联机器人优化设计方法研究[D];天津大学;2009年
8 刘欣;两种并联机器人的机构性能分析与运动控制研究[D];西安电子科技大学;2009年
9 李艳文;几类空间并联机器人的奇异研究[D];燕山大学;2005年
10 张世辉;并联机器人汉字雕刻技术的研究[D];燕山大学;2005年
相关硕士学位论文 前10条
1 陈美钰;平面五杆并联机器人动力学特性与控制系统研究[D];北京工商大学;2010年
2 黄伟明;基于3-RRRT并联机器人的少自由度并联机构的研究[D];天津理工大学;2015年
3 焦亚彤;6自由度3支链并联机器人的工作空间分析[D];河北大学;2015年
4 宋婷;二自由度冗余驱动并联机器人动态控制研究[D];长安大学;2015年
5 陈景礼;3-PCR并联机器人运动仿真与精度分析[D];河北工程大学;2015年
6 李楠;名优绿茶并联采摘机器人控制系统研究[D];南京林业大学;2015年
7 马同;3-PSP并联机器人的位姿测量与控制系统研究[D];浙江大学;2015年
8 胡如方;并联机器人动力学参数测试方法及实验验证[D];安徽工程大学;2015年
9 曾继涛;一种三自由度快速并联机器人的结构设计及系统仿真研究[D];电子科技大学;2015年
10 刘丽;六自由度并联机器人轨迹生成及实验研究[D];长春理工大学;2015年
,本文编号:2499689
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2499689.html