基于大数据分析挖掘的地质文献推荐方法研究
发布时间:2018-03-11 03:28
本文选题:大数据技术 切入点:分词技术 出处:《中国矿业》2017年09期 论文类型:期刊论文
【摘要】:地质图书馆书籍多,数据资料庞大,然而却存在数据资料增长过快和难以发现读者兴趣点的问题。实现高效的图书馆借阅数据挖掘分析与推荐,是提高效率的重要手段。为此本文提出了基于大数据地质文献分析挖掘平台,包括聚类分析,中文分词,推荐系统,关联分析功能,再通过Hadoop集群多节点进行推荐,从而提高了工作的效率。
[Abstract]:There are a lot of books and huge data in geological library, but there are some problems such as too fast growth of data and difficulty to find readers' interesting points. In order to realize the efficient analysis and recommendation of library borrowing data mining, It is an important means to improve efficiency. Therefore, this paper puts forward a platform based on big data geological literature analysis and mining platform, including cluster analysis, Chinese word segmentation, recommendation system, association analysis function, and then recommend it through Hadoop cluster multi-node. Thus, the efficiency of the work is improved.
【作者单位】: 中国矿业大学(北京);国土资源部地质信息技术重点实验室;中国地质调查局发展研究中心;中国地质大学(北京);中国地质图书馆;中国科学院大学;
【基金】:国土资源部公益性行业科研专项项目资助(编号:201511079)
【分类号】:G250.7;P5
,
本文编号:1596390
本文链接:https://www.wllwen.com/tushudanganlunwen/1596390.html
教材专著