土壤微生物学特性对土壤健康的指示作用
本文关键词:土壤微生物学,由笔耕文化传播整理发布。
当前位置:首页 >> 生物学 >> 土壤微生物学特性对土壤健康的指示作用
生物多样性
2007, 15 (2):162-171
doi: 10.1360/biodiv.060290 http: //www.biodiversity-science.net
Biodiversity Science
土壤微生物学特性对土壤健康的指示作用
周丽霞* 丁明懋(中国科学院华南植物园, 广州 510650)
摘要: 土壤健康是陆地生态系统可持续发展的基础。作者通过概述土壤微生物学特性(土壤微生物群落结构、土壤 微生物生物量、土壤酶活性)与土壤质量的关系, 阐明了土壤微生物对土壤健康的生物指示功能。研究表明: 土壤 中细菌、真菌和放线菌的组成及其所占比率在一定程度上反映了土壤的肥力水平: 在土壤性质和肥水条件较好的 土壤中, 细菌所占比率较高。土壤微生物生物量与土壤有机质含量密切相关, 而且土壤微生物生物量碳与土壤有 机碳的比值(Cmic : Corg)和土壤微生物代谢熵(qCO2)的变化在一定程度上反映了土壤有机碳的利用效率。一般情况 下, 土壤酶活性高的土壤中, 土壤微生物生物量碳、 氮含量也高。 因此, 土壤微生物学特性可以反映土壤质量的变 化, 并可用作评价土壤健康的生物指标。 关键词: 土壤微生物群落结构, 微生物生物量, 土壤健康, 生物指示
Soil microbial characteristics as bioindicators of soil health
Lixia Zhou*, Mingmao Ding
South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650
Abstract: Soil health is important for the sustainable development of terrestrial ecosystem. In this review, we summarizes the relationship between soil quality and soil microbial characteristics such as soil microbial community structure, soil microbial biomass and soil enzymatic activity in order to illustrate the function of soil microbial characteristics as bio-indicators of soil health. Many studies have showed that the soil nutrient is correlated with the quantity or the composition of bacteria, fungi and actinomycetes in soils. In general, higher ratio of soil bacteria indicates better soil quality and higher soil nutrient content. Soil microbial biomass is closely correlated with soil organic carbon, and the ratios of soil microbial biomass carbon to soil organic carbon(Cmic : Corg) and microbial metabolic quotient (qCO2) reflect the use efficiency of soil organic C. The activity of soil enzymes are positively correlated with soil microbial biomass carbon and nitrogen. Therefore, soil microbial characteristics reflect the changes of soil quality and thus can be used as bio-indicators of soil health. Key words: soil microbial community structure, soil microbial biomass, soil health, bio-indicator
土壤微生物是土壤生态系统的重要组份之一, 几乎所有的土壤过程都直接或间接地与土壤微生 物有关。在土壤生态系统中土壤微生物的作用主要 体现在: (1) 分解土壤有机质和促进腐殖质形成 (Vossbrinck et al., 1979; 许光辉等, 1984; Scholle et al., 1992; 李越中等, 1992; Cortez & Bouché, 2001); (2) 吸收、 固定并释放养分, 对植物营养状况的改善 和调节有重要作用 (娄隆厚, 1962; Singh et al.,
1989; 李阜棣, 1993; Roy & Singh, 1994); (3) 与植 物共生促进植物生长, 如豆科植物的结瘤固氮 (Allen & Allen, 1981; Vincent, 1982; 李庆逵, 1989) 和植物菌根的形成(蚁伟民等, 1990; Heckman et al., 2001; Lutzoni et al., 2001); (4) 在土壤微生物的作用 下, 土壤有机碳、氮不断分解, 是土壤微量气体产 生的重要原因(Smith et al., 2003; 韩兴国和王智平, 2003); (5) 在有机物污染和重金属污染治理中起重
—————————————————— 收稿日期: 2006-11-23; 接受日期: 2007-01-10 基金项目: 国家自然科学基金重点项目(30630015)、中国科学院方向性项目(KZCX2-YW-413)和中国科学院“百人计划”项目 * 通讯作者 Author for correspondence. E-mail: zhoulx@scib.ac.cn
第2期
周丽霞和丁明懋: 土壤微生物学特性对土壤健康的指示作用
163
要作用(Boopathy, 2000)。另外, 土壤微生物特性对 土 壤 基 质 的 变 化 敏 感 (Powlson et al., 1987; Chander et al., 1998; Dilly & Munch, 1998), 其群落 结构组成和生物量等可以反映土壤的肥力状况。因 为土壤微生物特性与土壤质量的关系密切(Doran et al., 1994; Dilly & Munch, 1998), 所以, 近年来将土 壤微生物群落结构组成、土壤微生物生物量、土壤 酶活性等作为土壤健康的生物指标来评价退化生 态系统的恢复进程和指导生态系统管理等已逐渐 成为研究热点(Dilly & Munch, 1998; van Bruggen & Semenov, 2000; Harris, 2003; Schloter et al., 2003; Bossio et al., 2006)。本文中主要通过概述土壤微生 物群落结构、土壤微生物生物量、土壤酶活性与土 壤质量的关系, 阐明它们对土壤健康的生物指示功 能。
以反映出一个受损生态系统的受损程度或恢复潜 力 (Diaz-Ravina et al., 1988; Hernot & Robertson, 1994; Dilly & Munch, 1998)。 一般来说, 土壤退化或 受损对土壤微生物的数量及种类产生的是负面影 响, 但某些耐性微生物种类在被污染土壤中的数量 反而增加(Paoletli, 1997; 滕应等, 2003)。刘世贵等 (1994)对川西北退化草地土壤微生物区系的研究发 现, 退化程度高的草地中微生物种类与数量减少; 不同退化程度的草地中土壤微生物主要类群在数 量上有较大差异, 起主导作用的微生物种类也有所 不同。 除此之外, 在自然界中存在着种类繁多的某些 特殊的土壤微生物类群, 它们可作为特殊的指示生 物。如在地下有油气藏的地表土壤中会存在特定种 类的细菌——烃类氧化菌, 它们会随着烃渗漏浓度 的升高而增多。因此, 可利用这些烃类氧化菌作为 指示来寻找油气矿藏(金文标等, 2002)。王红梅等 (2002)通过提取金矿化区和非矿化区第四纪土壤微 生物蜡样芽孢杆菌进行微生物与金离子的相互作 用实验证实, 当金含量升高到一定范围时, 可以对 Bacillus cereus的生长产生抑制作用, 促使其由营养 体向芽孢转化, 使矿化区土壤芽孢计数值显著增 高。这一发现对寻找金矿具有指导意义。 1.2 磷脂脂肪酸分析法(PLFA)在土壤微生物群落 栖息在土壤中的微生物种类繁多, 传统的分析 方法只能观察到不到5%的微生物群落(Coleman & Crossley Jr, 1996; Joseph et al., 2003), 而且绝大多 数的土壤微生物种类无法培养出来(Amann et al., 1995)。 这给土壤微生物数量、 组成和生态分布的测 定带来了很多困难。所以新的方法被陆续引入土壤 微生物分析中, 如微平板法(BIOLOG)、 变性梯度凝 胶电泳法(DGGE)、脂肪酸甲酯(FAME)分析、磷脂 脂 肪 酸 (PLFA) 分 析 等 近 年 来 得 到 广 泛 应 用 (Haack et al., 1994; 杨元根等, 2002)。 在分析土壤中微生物群落结构的变化时, PLFA方法与BIOLOG方法相比更敏感, 反映的信 息更多, 标准偏差更小(Ibekwe & Kennedy, 1998), 也可以克服FAME方法在分析不同属间的微生物时 有可能发生重叠的不足(Green & Scow, 2000), 与 DGGE相比, PLFA方法具有可以估测土壤微生物生 物量、容易将细菌和真菌类群分开、分析费用相对 结构研究中的应用
1
土壤微生物群落结构与土壤质量
土壤微生物群落结构主要指土壤中各主要微
生物类群(包括细菌、真菌、放线菌等)在土壤中的 数量以及各类群所占的比率, 其结构和功能的变化 与土壤理化性质的变化有关。 土壤的结构、 通气性、 水分状况、养分状况等对土壤微生物均有重要影响 (Noah et al., 2003)。 1.1 与土壤理化性质的关系 研究发现, 在熟化程度高和肥力好的土壤中, 土壤微生物的数量较多, 细菌所占的比例较高; 而 在干旱及难分解物质较多的土壤中, 土壤微生物总 数较少, 细菌所占比率相对较低, 而真菌和放线菌 的比率相对较高(曹正邦和樊庆笙, 1957; 许光辉等, 1984; 蚁伟民等, 1984; 陈泰雄等, 1990; Albiach et al., 2000)。如在郁闭度较高的鼎湖山阔叶林中, 由 于土壤地表凋落物较多, 土壤中细菌所占的比率要 比同一地区的针叶林高66–126% (蚁伟民等, 1984)。 Ovreas和Torsvik(1998)用多种方法测定了土壤微生 物群落结构, 发现富含有机质的土壤中微生物多样 性高于砂土。Griffiths等 (1999) 研究发现, 向土壤 中施加含碳量高的物质能使土壤微生物群落中真 菌和革兰氏阴性细菌的比例提高, 而使放线菌和革 兰氏阳性菌的比例降低。 土壤退化或受损会影响到土壤微生物的多样 性 (Kurakov, 1998)。土壤微生物数量、种类及其组 成会随土壤受污染与退化的程度发生变化, 由此可
164
生 物 多 样 性 Biodiversity Science
第 15 卷
较低等优点。但是至目前为止PLFA方法在我国的 应用还十分有限。 因此, 本文中将对PLFA方法作特 别介绍, 希望它能在我国的微生物群落研究中得到 更好的应用。 1.2.1 PLFA的命名 磷脂脂肪酸(phospholipid fatty acids, PLFA)是 活体微生物细胞结构的重要组成成分, 不同类群的 微生物通过不同的生化途径合成不同的PLFA。因 此这一指标可较准确地表达土壤微生物的类群及 其生物量(Zelles, 1999)。PLFA已被广泛用作分析微 生物群落结构和微生物生物量的生物标记, 在土壤 微生物分析中越来越多地被采用。 PLFA一般以总碳数∶双键数和双键距离分子 末端的位置来命名, c和t分别表示顺式和反式, i和a 分别表示支链的异构和反异构, 10Me表示一个甲 基团在距分子末端第10个碳原子上, cy表示环丙烷 脂肪酸等。已有的研究结果发现, 大多数细菌含有 饱和或单不饱和的以酯键连接到丙三醇的脂肪酸, 如 : i15:0, a15:0, 15:0, 16:1ω5, i17:0, 17:0, 18:1ω7(Tunlid & White, 1992); 革兰氏阳性细菌含 有多支链的脂肪酸, 如: i13:0, a13:0, i14:0, i15:0, a15:0, i16:0, i17:0, a17:0; 革兰氏阴性细菌含有单不 饱 和 脂 肪 酸 , 如 : 14:1ω5c, 15:1ω6c, 16:1ω7c, 16:1ω7t, 16:1ω5c, 18:1ω9c, 18:1ω7c, 18:1ω7t(Bossio et al., 2006); 真菌含有特殊的脂肪酸, 如: 18:2ω6c, 18 :3ω6c, 18: 3ω3c (Frostegard & B??th, 1996); 而 含有侧链甲基的脂肪酸, 如: 10Me18:0, 16Me16:0 和10Me18:0等则可用于放线菌生物量的估算(Kieft et al., 1994; Bossio et al., 2006)。 1.2.2 PLFA对土地利用方式/环境变化的指示 PLFA 对 土 地 利 用 方 式 的 改 变 十 分 敏 感 。 Steenwerth等(2002)分析了美国加州2个沿海流域9 种不同土地利用方式下的土壤微生物群落结构, 发 现在不同的土地利用方式以及不同的土壤性质与 管理方式下, 土壤微生物群落PLFA明显不同: 草 地中的土壤碳、氮和微生物PLFA总量均比耕作的 土地高; 土壤微生物群落组成受土壤有机质变化的 影 响 且 与 PLFA 总 量 密 切 相 关 。 Hedlund(2002) 用 PLFA分析表明, 种植了植物的农业废弃地在向天 然草地或森林群落演替的过程中, 种植管理方式下 的土壤与自然恢复的土壤相比, 前者促进了细菌群 落的增加 以及微生物活性与生物量的提高。
Rajendran等(1992)通过测定C10 到C24 共63种脂肪酸 发现: 在富营养化的海岸沉积物中微生物生物量变 异较大, 分布不均; 沿海地区的微生物生物量明显 高于休闲的海滩, 其不饱和脂肪酸与长链脂肪酸比 例较低, 代表细菌的脂肪酸比例较高, 并且与厌氧 和需氧细菌有相关性。Yao等(2001)应用PLFA分析 了8个不同肥力水平和种植历史的红壤中微生物群 落结构, 发现PLFA总量与土壤有机碳、总氮、微生 物生物量碳和基础呼吸均呈显著正相关; 土地种植 历史、植被类型和作物栽培方式对土壤微生物群落 结构有很大影响。Bunemann等(2004)研究了肯尼亚 2种作物的轮作与施磷肥对土壤微生物群落结构的 影响, 发现在轮作系统中, 高水平的土壤有机质、 土壤微生物生物量与高数量的PLFA有关, 并且真 菌和革兰氏阴性细菌的丰富度也有增长, 而施磷肥 对 微 生 物 群 落 结 构 的 影 响 不 大 。 Bossio 和 Scow(1998)发现在灌溉条件下单不饱和脂肪酸的丰 富度会减少。在恢复的湿地土壤中的支链脂肪酸的 丰富度明显高于管理下的农业土壤, 而在两种土壤 中单不饱和脂肪酸(即革兰氏阴性细菌)的丰富度都 会随土壤深度增加而减少(Bossio et al., 2006)。 在受到污染的土壤中, 微生物群落结构也会 发生变化。Kelly等(1999)的研究表明, 受污染土壤 中指示菌根真菌和放线菌的PLFA相对含量下降。 Frostegard 等 (1993) 认 为 在 重 金 属 污 染 的 土 壤 中 10 10Me16∶0、 Me 17∶0 、 Me 18∶0的变化, 可 10 以反映出放线菌生物量的增加与减少。Wiemken等 (2001)用PLFA方法分析了CO2浓度升高与氮富集对 山毛榉–云杉(Fagus silvatica–Picea abies)生态系统 中土壤微生物群落的影响, 发现CO2浓度升高时在 氮富集的土壤中真菌生物量明显增加, 且长时间超 过细菌而占统治地位。 1.2.3 PLFA与地表植被类型的关系 土壤植被类型的变化也会影响到土壤微生物 的变化。Kourtev等 (2002) 通过分离99种不同的 PLFA发现, 在新泽西北部阔叶林中引进外来种后, 由于改变了原有植物的根系生长以及地表凋落物 等, 土壤微生物群落结构发生了明显改变。Saetre 和Bath(2000)研究了挪威云杉(Picea abies)和桦树 (Betula pubescens)混交林中土壤微生物群落的空间 差异, 结果表明, 云杉比桦树对PLFA的影响更大; 造成这一差异的原因除了两个树种的土壤湿度和
第2期
周丽霞和丁明懋: 土壤微生物学特性对土壤健康的指示作用
165
地面植被不同以外, 更大程度上与其土壤有机质含 量的差异相关。
壤微生物代谢熵(即土壤微生物基础呼吸与土壤微 生物生物量之间的比值, qCO2)等也被用作土壤性 质或健康的生物指标。 研究发现, Cmic : Corg比值的变化可以反映土壤 有机碳的动态。如果以成熟森林的Cmic : Corg比值为 参照值, 那么当Cmic : Corg比值高于参照值时, 可认 为土壤中有机碳处于积累阶段; 反之则反映了土壤 有机质处于消耗阶段(Insam et al., 1989; Ding et al., 1992; 蚁伟民等, 1995)。 土壤微生物代谢熵(qCO2)则将微生物生物量的 大小与微生物的生物活性和功能有机地联系起来, 可对微生物的能量利用效率进行度量(Wardle & Ghani, 1995)。qCO2的变化与土壤微生物群落组成 的变化有关, 并且随土壤熟化程度的增加而逐渐减 小(Insam & Domsch, 1988; Insam & Haselwandter, 1989)。Ding等 (1992) 认为, qCO2伴随着生态系统 由初级向高级的演替而呈现下降趋势, 在qCO2 较 低的土壤中微生物对碳的利用效率较高, 维持相同 微生物生物量所需的能量就少, 土壤质量也越好。 2.2 与地表植被/土地利用方式的关系 土壤微生物生物量与地表植被类型关系密切。 姜培坤和周国模(2003)发现阔叶林下土壤微生物生 物量碳、氮均明显高于杉木林, 不同植被下土壤微 生物生物量碳∶氮比率的不同决定于凋落物与根 际物质分解过程中诱导形成的微生物区系的差异; 杉木的长期生长会使林地和根际土壤生物学特性 改变, 土壤微生物生物量碳降低。杉木林地土壤微 生物生物量碳与土壤有机质、全氮、全磷、全钾、 水解氮、有效磷含量和阳离子交换量均呈显著或极 显著相关(姜培坤等, 2002)。张海燕等(2006)对不同 利用方式的19个黑土样品的微生物生物量和养分 状况进行了分析, 结果表明土壤微生物生物量和土 壤养分含量大体上都呈现出林地>大豆地>玉米地 的趋势, 同时土壤微生物生物量与土壤有机质、全 氮、全磷、速效钾呈现出显著或极显著正相关关系, 并且土壤微生物的生物量碳比生物量氮更为灵敏。 Imberger 和 Chiu(2001)研究了台湾亚高山针叶林 与草地土壤中的细菌与真菌生物量, 发现森林土壤 中的细菌与真菌生物量明显高于草地。 Wardle(1995)注意到免耕条件有利于土壤有机碳和 有机氮的积累, 免耕土壤中细菌和真菌的生物量均 较高; 而耕作活动加速了土壤微生物对有机质的消
2
土壤微生物生物量与土壤质量
土壤微生物生物量是土壤有机质中有生命的
部分, 它的大小反映了参与调控土壤中能量和养分 循环以及有机物质转化的微生物数量(Arunachalam et al., 1999; Taylor et al., 2002)。 通常情况下, 土壤微 生物生物量与土壤有机碳含量关系密切: 土壤碳含 量高, 土壤微生物生物量也相应较高(Jenkinson & Powlson, 1976; Insam & Domsch, 1988; Ding et al., 1992)。由于土壤微生物生物量碳、氮能够敏感且及 时地反映或预示土壤的变化, 因而被越来越多地用 作土壤质量的生物指示指标(余慎等, 1999; 任天志 和Stefano, 2000)。 2.1 对土壤健康状况的指示 土壤微生物生物量可以敏感地反映出不同土 壤生态系统间的差异。Luizao等(1992) 发现, 草地 或林地开垦为耕地后会导致土壤微生物生物量的 下降, 这可能是由于耕作使土壤有机物很快分解, 进而土壤微生物活性降低。陈国潮和何振立(1998) 发现在不同利用方式下, 高度风化的酸性红壤中微 生物生物量碳普遍较低, 且与土壤有机质之间有较 明显的相关性。Chander等(1998)的研究表明, 造林 可以改进土壤有机质状态, 增加土壤营养库与微生 物活性。Carter (1986)和Sarathchandra等(1989)研究 发现免耕或施用有机肥可使土壤表层微生物生物 量增加。傅声雷等(1995)在广东鹤山“林、果、草、 鱼”复合生态系统中的研究也得出, 受施肥的影响, 果园土壤微生物生物量要明显高于林、草、鱼等子 系统。但Lee和Jose (2003)发现施用氮肥可导致棉白 杨(cottonwood) 和火炬松(loblolly pine)土壤微生物 生物量降低。Stark等(2007)发现施肥或不施肥对土 壤微生物特性没有明显影响, 但管理方式的不同对 微生物生物量有影响, 表明作物轮作与植被类型对 土壤微生物生物量及酶活性的影响大于施肥。 此外, 土壤微生物对土壤中有害物质如重金属、农药、酸 害、除草剂等反应敏感, 因此可借助土壤微生物生 物量的分析诊断土壤环境的健康状况(Perucci et al., 2000) 。 在指示土壤过程或土壤健康状况时, 土壤微生 物生物量碳与土壤有机碳的比值(即Cmic : Corg)和土
166
生 物 多 样 性 Biodiversity Science
第 15 卷
耗, 使得土壤有机碳、氮含量低于免耕土壤, 同时 其土壤中的微生物数量和生物量也显著减少。 2.3 微生物生物量的测定 由于土壤微生物生物量的测定很重要但又具 有一定的难度, 因此人们一直在不断改进测定方 法。现在通用的氯仿熏蒸提取法(CFE)(Vance et al., 1987)就是在氯仿熏蒸培养法(Jenkinson & Powlson, 1976)的基础上发展而来的。Leckie等(2004)用氯仿 熏蒸提取法、PLFA法与DNA分析法分别研究了森 林腐殖质与矿区的土壤微生物生物量, 发现PLFA 与CFE方法的分析结果之间有很好的相关性(R = 0.96), 即1 nmol PLFA相当于用氯仿熏蒸法从腐殖 质中释放出来3.2 μg C 或从矿质土壤中释放出2.4 μg C。但这两种方法的结果与DNA浓度之间的关系 不明显。Bailey(2002)的研究也发现, PLFA与CFE方 法之间存在较好的相关性( R = 0.77)。随着土壤微 生物分析方法的不断改进, 土壤微生物生物量作为 土壤健康状况的指示作用将被更广泛地应用。
2 2
生 物 平 板 计数 法 之 间 的关 系 不 明 显。 周 礼 恺 等 (1983)观察到在黑土、草甸黑土和棕壤中土壤酶是 以酶—有机质复合体的形式存在, 其中绝大部分酶 都和土壤腐殖质及土壤碳、氮状况显著相关。一般 认为, 脲酶、脱氢酶、蛋白酶、磷酸酶和纤维素酶 的活性与微生物生物量有较密切的关系, 会随着微 生物生物量的增加而不断增强, 能够表征土壤碳、 氮、磷等养分的循环状况(Tiwari et al., 1989; Mersi & Schinner, 1991; 郭继勋等, 1997)。 3.2 与土壤肥力的关系 施肥处理有利于改善土壤理化性质和微生物 区 系 , 使 土 壤 微 生 物 数 量 增 加 (Albiach et al., 2000), 并使土壤转化酶、磷酸酶、葡聚糖酶、过氧 化物酶和脲酶活性提高(Bandick & Dick, 1999)。邱 莉萍等(2004)通过长期定位试验地中土壤养分和酶 活性的测定发现, 有机质、全氮、全磷、碱解氮、 速效磷与脲酶、碱性磷酸酶活性呈显著或极显著相 关; 而蔗糖酶、多酚氧化酶与所有肥力因素相关性 均不显著; 耕种和不同的施肥方式均能提高土壤养 分的含量, 明显地改善土壤酶的活性, 其中对土壤 脲酶和磷酸酶活性影响明显(邱莉萍等, 2003)。 高瑞 和吕家珑 (2005) 发现, 施肥后作物根系及其分泌 物具有刺激土壤酶活性的作用, 使土壤脲酶、碱性 磷酸酶、转化酶和过氧化氢酶活性均明显提高, 且 土壤酶活性高低与作物产量相关性显著。杜红霞等 (2006) 的 研 究 表 明 , 施 氮 肥 使 云 南 松 (Pinus yunnanensis)林地和糙皮桦(Betula utilis)林地土壤脲酶、 过氧化氢酶和蔗糖酶活性较对照有不同程度的提 高。 3.3 与土地利用方式和污染的关系 土壤酶对因环境或管理因素引起的变化较敏 感, 并具有较好的时效性特点。在退化土壤中土壤 微生物生物量以及β-葡萄糖甘酶、磷酸单脂酶、蛋 白酶、过氧化氢酶等酶活性降低; 而在轮作方式下, 这几种酶的活性常高于单作方式(Miller & Dick, 1995)。刘梦云等(2006)对不同土地利用方式下土壤 酶活性特征的研究结果表明, 土壤蔗糖酶、脲酶和 碱性磷酸酶活性均与速效氮及有机质呈极显著正 相关, 且在天然草地表层土壤酶活性较高, 灌木林 地和人工草地次之, 果园和农地较低。 在受污染或退化的生态系统中, 随着土壤有机 质含量的降低和土壤微生物生物量的减少, 土壤酶
3
土壤酶活性与土壤质量
土壤酶是一种生物催化剂, 主要来源于土壤微
生物和植物根系的分泌物及动植物残体分解释放 的酶, 包括氧化还原酶类、水解酶类、裂合酶类和 转移酶类等。由于土壤的生物和生物化学过程受控 于酶的活性, 因此土壤酶活性反映了土壤中各种生 物化学过程的强度和方向。随着对土壤酶活性与土 壤性质关系的深入了解和土壤酶学理论与体系的 逐渐完善 (Burns & Dick, 2001), 土壤酶的专一性、 易测定性和综合性等特点使其有可能成为一个有 潜力的土壤生物指示指标(Dick, 1994; Kandeler et al., 1999)。 3.1 与土壤微生物类群的关系 研究表明, 活体微生物对土壤酶的影响相当 大。特定的土壤酶活性与细菌和真菌类群密切相关 (Aon & Colaneri, 2001)。 土壤微生物数量, 尤其是土 壤细菌的丰富度与土壤磷酸单酯酶、β-葡聚糖酶、 脱 氢 酶 和 FDA 水 解 酶 等 酶 活 性 呈 显 著 正 相 关 (Taylor et al., 2002)。Frankenberger 和 Dick(1983) 研究了10种土壤中的11种酶, 评价了它们与土壤呼 吸、微生物生物量、平板计数以及土壤其他属性之 间的关系, 发现碱性磷酸酶、酰胺酶和过氧化氢酶 与微生物呼吸及生物量之间存在密切联系, 但与微
第2期
周丽霞和丁明懋: 土壤微生物学特性对土壤健康的指示作用
167
的活性也会降低(龙章富和刘世贵, 1995; Caldwell et al., 1999)。罗虹等(2006)采用回归正交设计方案 研究了Cd、Cu、Ni复合污染对6种土壤酶(脲酶、转 化酶、蛋白酶、磷酸酶、过氧化氢酶、脱氢酶)活性 的影响, 结果表明6种酶活性与3种重金属复合污染 之间均呈显著或极显著的相关关系; 但3种重金属 复合污染对不同土壤酶活性的影响各有不同, 差异 显著。王友保等(2003)对铜官山铜尾矿库土壤酶活 性的研究表明, 脲酶、蔗糖酶、过氧化氢酶的酶活 性和尾矿库的植被状况具有较强的相关性。
4
结语
土壤微生物的研究很大程度上受研究方法的
限制。从传统的平板培养计数法发展到与生物化 学、生理学和分子生物学相结合的方法, 对微生物 群落结构、种类与数量的研究起到了明显的推动作 用。但由于土壤微生物种类繁多, 生存状况复杂, 加上微生物本身个体微小, 结构简单, 缺乏可以区 分的明显特征, 因此任何一种分析方法都有其局限 性, 不可能尽善尽美地完成人们对复杂的土壤微生 物的认识, 目前的研究及其结果还远不能说明土壤 微生物的实际情况。但比较而言, 在研究土壤微生 物的群落结构方面, PLFA方法具有其他方法不可 替代的优点。 由于土壤微生物学特性可以反映土壤质量的 变化, 并可用作评价土壤健康的生物指标, 相信随 着实验分析手段的不断改进与创新, 对土壤微生物 种类、群落结构及其功能群的认识将会不断扩展和 深入, 作为评价土壤健康的土壤微生物学指标也会 更精确和更优化, 最终为陆地生态系统管理及其可 持续发展提供更好的科学依据。 参考文献
Albiach R, Canet R, Pomanes F, Ingelmo F (2000) Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 75, 43–48. Allen ON, Allen EK (1981) The Leguminosae: A Source Book of Characterisitics, Uses and Nodulation. The University of Wisconsin Press, Wisconsin. Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews, 59, 143–149. Aon MA, Colaneri AC (2001) Temporal and spatial evolution of enzymatic activities and physico-chemical properties in
an agricultural soil. Applied Soil Ecology, 18, 255–270. Arunachalam K, Arunachalam A, Melkania NP (1999) Influence of soil properties on microbial populations, activity and biomass in humid subtropical mountainous ecosystems of India. Biology and Fertility of Soils, 30, 217–223. Bailey VL, Peacock AD, Smith JL, Bolton Jr H (2002) Relationships between soil microbial biomass determined by chloroform fumigation-extraction, substrate-induced respiration, and phospholipids fatty acid analysis. Soil Biology and Biochemistry, 34, 1385–1389. Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31, 1471–1479. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresource Technology, 74, 63–67. Bossio DA, Fleck JA, Scow KM, Fujii R (2006) Alteration of soil microbial communities and water quality in restored wetlands. Soil Biology and Biochemistry, 38, 1223–1233. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 35, 265–278. Bunemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biology and Biochemistry, 36, 889–901. Burns RG, Dick RP (2001) Enzymes in the Environment: Ecology, Activity and Applications. Marcel Dekker, Inc., New York. Caldwell BA, Griffiths RP, Sollins P (1999) Soil enzyme response to vegetation disturbance in two lowland Costa Rican. Soil Biology and Biochemistry, 31, 1603–1608. Cao ZB (曹正邦), Fan QS (樊庆笙) (1957) Preliminary studies on the effect of fertilization for the properties of microorganisms in red soil areas. Acta Pedologica Sinica (土壤学 报), 5, 206–214. (in Chinese with English abstract) Carter MR (1986) Microbial biomass as an index for tillageinduced changes in soil biological properties. Soil and Tillage Research, 7, 29–40. Chander K, Goyal S, Nandal DP, Kapoor KK (1998) Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biology and Fertility of Soils, 27, 168–172. Chen GC (陈国潮), He ZL (何振立) (1998) Study on soil microbial biomass in red soil utilized by different ways. Chinese Journal of Soil Science (土壤通报), 29, 276–278. (in Chinese with English abstract) Chen TX (陈泰雄), Ding MM (丁明懋), Yi WM (蚁伟民), Liao LY (廖兰玉) (1990) Characteristics of soil microbiology under different vegetations in Heshan downland interdisciplinary experimental station. Tropical and Subtropical Forest Ecosystem (热带亚热带森林生态系统研 究), 7, 35–40. (in Chinese with English abstract)
168
生 物 多 样 性 Biodiversity Science
第 15 卷
Coleman DC, Crossley DA Jr (1996) Fundamentals of Soil Ecology. Academic Press, San Diego. Cortez J, Bouché M (2001) Decomposition of Mediterranean leaf litters by Nicodrilus meridionalis (Lumbricidae) in laboratory and field experiments. Soil Biology and Biochemistry, 33, 2023– 2035. Diaz-Ravina M, Caraballas T, Acea MJ (1988) Microbial biomass and activity in four acid soils. Soil Biology and Biochemistry, 20, 817–823. Dick RP (1994) Soil enzyme activities as indicators of soil quality. In: Defining Soil Quality for a Sustainable Environment (eds Doran JW, Coleman DC, Bezdicek DF, Stewart BA), pp. 107–124. Soil Science Society of America, Madison. Dilly O, Munch JC (1998) Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils, 27, 374–379. Ding MM, Yi WM, Liao LY, Martens R, Insam H (1992) Effects of afforestation on microbial biomass and activity in soils of tropical China. Soil Biology and Biochemistry, 24, 865–872. Doran JW, Coleman DC, Bezdicek DF, Stewart BA (1994) Defining Soil Quality for a Sustainable Environment, pp. 3–234. Soil Society of America Special Publication. Madison, Wisconsin. Du HX (杜红霞), Liu ZW (刘增文), Pan KW (潘开文), Gao XB (高祥斌), Zhang LP (张丽萍), Gao WJ (高文俊) (2006) Effects of external source C, N disturbances on enzymes activities of forest soil. Journal of Northwest Forestry University (西北林学院学报), 21, 35–38. (in Chinese with English abstract) Frankenberger WT Jr, Dick WA (1983) Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America, 47, 945–951. Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59–65. Frostegard A, Tunlid A, B??th E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 59, 3605–3617. Fu SL (傅声雷), Yi WM (蚁伟民), Ding MM (丁明懋), Yu ZY (余作岳) (1995) Nutrient dynamics of soil microbes for the ecosystems of forest, orchard, grassland and fish ponds. Acta Ecologica Sinica (生态学报), 15 (Suppl. A), 148–155. (in Chinese with English abstract) Gao R (高瑞), Lu JL (吕家珑) (2005) Study on the enzyme activities and fertility change of soils by a long-term located utilization of different fertilizers. Chinese Journal of Eco-Agriculture (中国生态农业学报), 13, 143–145. (in Chinese with English abstract) Green CT, Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in
aquifers. Hydrogeology Journal, 8, 126–141. Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biology and Biochemistry, 31, 145–153. Guo JX (郭继勋), Jiang SC (姜世成), Lin HJ (林海俊), Jin XM (金晓明) (1997) Enzyme activity of alkaline meadow soil with different grassland vegetations. Chinese Journal of Applied Ecology (应用生态学报), 8, 412–416. (in Chinese with English abstract) Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility and interpretation of fatty acid methylester profiles of model bacterial communities. Applied and Environmental Microbiology, 60, 2483–2493. Han XG (韩兴国), Wang ZP (王智平) (2003) Soil biodiversity and trace gases (CO2, CH4, N2O) metabolism: a review. Biodiversity Science (生物多样性), 1, 322–332. (in Chinese with English abstract) Harris JA (2003) Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 54, 801–808. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–1133. Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry, 34, 1299–1307. Hernot J, Robertson GP (1994) Vegetation removal in two soils of the humid tropics: effect on microbial biomass. Soil Biology and Biochemistry, 26, 111–117. Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiology Ecology, 26, 151–163. Imberger KT, Chiu CY(2001) Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biology and Fertility of Soils, 33, 105–110. Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecology, 15, 177–188. Insam H, Parkinson D, Domsch KH (1989) Influence of macroclimate on soil microbial biomass. Soil Biology and Biochemistry, 21, 211–221. Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia, 79, 174–178. Jenkinson DS, Powlson DS (1976) The effects of biocidall treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Biochemistry, 8, 209–213. Jiang PK (姜培坤), Xu QF (徐秋芳), Yu YW (俞益武) (2002) Microbial biomass carbon as an indicator for evaluation of soil fertility. Journal of Zhejiang Forestry College (浙江
第2期
周丽霞和丁明懋: 土壤微生物学特性对土壤健康的指示作用
169
林学院学报), 19, 17–19. (in Chinese with English abstract) Jiang PK (姜培坤), Zhou GM (周国模) (2003) Changes in soil microbial biomass carbon and nitrogen under eroded red soil by vegetation recovery. Journal of Soil Water Conservation (水土保持学报), 17, 112–114. (in Chinese with English abstract) Jin WB (金文标), Yao JJ (姚建军), Chen MJ (陈孟晋), Gao ZR (高哲荣) (2002) Screening indicating bacteria for microbiological exploration of natural gas. Natural Gas Industry (天然气工业), 22, 20–22. (in Chinese with English abstract) Joseph SL, Hugenholtz P, Sangwan P, Osbome CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied and Environmental Microbiology, 69, 7210–7215. Kandeler E, Palli S, Stemmer M, Gerzabek MH (1999) Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem. Soil Biology and Biochemistry, 31, 1253–1264. Kelly JJ, Haggblom M, Tare RL (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry, 31, 1455–1465. Kieft TL, Ringelberg DB, White DC (1994) Changes in esterlinked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Applied and Environmental Microbiology, 60, 3292–3299. Kourtev PS, Ehrenfeld JG, Haeggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology, 83, 3152–3166. Kurakov A (1998) Assessment of soil quality by biological methods: experience from arable soil in Gech Republic. In: Proceeding of the 16th World Congress of Soil Science, Montpellier, France. Leckie SE, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW (2004) Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus. Soil Biology and Biochemistry, 36, 529–532. Lee KH, Jose SB (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185, 263–273. Li FD (李阜棣) (1993) Prosperous areas of current soil microbiology. Acta Pedologica Sinica ( 土 壤 学 报 ), 30, 229–236. (in Chinese with English abstract) Li QK (李庆逵) (1989) Development and prospect of soil science in China. Acta Pedologica Sinica (土壤学报), 26, 207–216. (in Chinese with English abstract) Li YZ (李越中), Zheng SL (郑是琳), Jiang GZ (姜广正) (1992) Decomposition of white poplar leaves and microfungal succession related to leaves. Acta Microbiologica
Sinica (微生物学报), 32, 299–304. (in Chinese with English abstract) Liu MY (刘梦云), Chang QR (常庆瑞), Qi YB (齐雁冰), An SS (安韶山) (2006) Features of soil enzyme activity under different land uses in Ningnan Mountain area. Chinese Journal of Eco-Agriculture (中国生态农业学报), 14, 67–70. (in Chinese with English abstract) Liu SG (刘世贵), Ge SR (葛绍荣), Long ZF (龙章富) (1994) Studies on soil microorganism numbers and microbiota of degenerated rangelands in northwest region of Sichuan, P.R.China. Acta Prataculturae Sinica (草业学报), 3, 70– 76. (in Chinese with English abstract) Long ZF (龙章富), Liu SG (刘世贵) (1994) Preliminary study on soil biochemical activities of degenerated grasslands in northwest Sichuan, China. Acta Pedologica Sinica (土壤 学报), 32, 221–227. (in Chinese with English abstract) Lou LH (娄隆厚)(1962) Effects of Microorganism on the Conversion of Soil Nutrient (微生物在土壤养分转化中的作 用). Science Press, Beijing. (in Chinese) Luizao RCC, Bonde TA, Rosswall T (1992) Seasonal variation of soil microbial biomass—the effect of clear-felling a tropical rainforest and establishment of pasture in the central Amazon. Soil Biology and Biochemistry, 24, 805–813. Luo H (罗虹), Liu P (刘鹏) , Sun XM (宋小敏) (2006) Effect of compound pollution of Cd, Cu and Ni on soil enzyme activities. Journal of Soil and Water Conservation (水土 保持学报), 20, 94–121. (in Chinese with English abstract) Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937–940. Mersi W, Schinner F (1991) An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11, 216–220. Miller M, Dick RP (1995) Thermal stability and activities of soil enzymes as influenced by crop rotations. Soil Biology and Biochemistry, 27, 1161–1166. Noah F, Joshua PS, Patricia AH (2003) Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry, 35, 167–176. Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 36, 303–315. Paoletli MG (1997) Biodiversity in Agro-ecosystems-Role for Sustainability and Bioindication, pp. 35–42. Lewis Publishing, Boca Raton, USA. Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicide treatment on soil microbial biomass. Biology and Fertility of Soils, 32, 17–23. Powlson DS, Brookes PC, Christensen BT (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19,
170
生 物 多 样 性 Biodiversity Science
第 15 卷
159–164. Qiu LP (邱莉萍), Liu J (刘军), Wang YQ (王益权), Sun HM (孙慧敏), He WX (和文祥) (2004) Research on relationship between soil enzyme activities and soil fertility. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 10, 277–280. (in Chinese with English abstract) Qiu LP (邱莉萍), Liu J (刘军) , He WX (和文祥), Wang YQ (王益权), Sun HM (孙慧敏) (2003) Effect of long-term fertilization on soil enzymatic activities. Agricultural Research in the Arid Area (干旱地区农业研究), 21, 44–47. (in Chinese with English abstract) Rajendran N, Matsuda O, Imamura N, Urushigawa Y (1992) Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids. Applied and Environmental Microbiology, 58, 562–571. Ren TZ (任天志), Stefano G (2000) Soil bioindicators in sustainable agriculture. Scientia Agricultura Sinica (中国农 业科学), 33, 68–75. (in Chinese with English abstract) Roy S, Singh JS (1994) Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest. Journal of Ecology, 82, 503–509. Saetre P, Bath E (2000) Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biology and Biochemistry, 32, 909–917. Sarathchandra SU, Perrott KW, Littler RA (1989) Soil microbial biomass: influence of simulated temperature changes on size, activity and nutrient content. Soil Biology and Biochemistry, 21, 987–993. Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment, 98, 255–262. Scholle G, Wolters V, Joergensen RG (1992) Effects of mesofauna exclusion on the microbial biomass in two modern profiles. Biology and Fertility of Soils, 12, 253–260. Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338, 499–500. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 54, 779–791. Stark C, Condron LM, Stewart A, Hong JD, Callaghan MO (2007) Effects of past and current crop management on soil microbial biomass and activity. Biology and Fertility of Soils, (in press). Steenwerth KL, Jackson LE, Calderon FJ, Stromberg MR, Scow KM (2002) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biology and Biochemistry, 34, 1599–1611. Taylor TP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface
soils and sub-soils using various techniques. Soil Biology and Biochemistry, 34, 387–401. Teng Y (滕应), Huang CY (黄昌勇), Long J (龙健), Yao HY (姚槐应), Liu F (刘方) (2003) Study on microbial activities and functional diversity of community in eroded soils from abandoned Pb, Zn, Ag mine. Journal of Soiland Water Conservation (水土保持学报), 17, 115–118. (in Chinese with English abstract) Tiwari MB, Tiwari BK, Mishra RR (1989) Enzyme activity and carbon dioxide evolution from upland and wetland rice soils under three agricultural practices in hilly regions. Biology and Fertility of Soils, 7, 359–364. Tunlid A, White DC (1992) Biochemical analysis of biomass community structure, nutritional status and metabolic activity of microbial communities in soil. In: Soil Biochemistry, Vol. 7 (eds Stotzky G, Bollag JM), pp. 229–262. Marcel Dekker, New York. van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15, 13–24. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. Vincent JM (1982) Nitrogen Fixation in Legumes. National Library of Australia Cataloguing in Publication Data, Australia. Vossbrinck CR, Co leman DC, Woolley TA (1979) A biotic and biotic factors in litter decomposition in a semiarid grassland. Ecology, 60, 265–271. Wang HM (王红梅), Yang FQ (杨逢清), Xie SC (谢树成), Zhou XG (周修高) (2002) Interaction between gold ion and quaternary soil microorganism: bioexploration indication. Marine Geology & Quaternary Geology (海洋地质 与第四纪地质), 22, 107–110. (in Chinese with English abstract) Wang YB (王友保), Liu DY (刘登义), Zhang L (张莉), Li Y (李影), Chu L (储玲) (2003) Vegetation state and Soil enzyme activities of copper tailing yard on Tongguan Mountain. Chinese Journal of Applied Ecology (应用生态 学报), 14, 757–760. (in Chinese with English abstract) Wardle DA (1995) Impacts of disturbance on detritus food webs in agroecosystems of contracting tillage and weed management practices. Advances in Ecological Research, 26, 105 – 185. Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry, 27, 1601–1610. Wiemken V, Laczko E, Ineichen K, Boller T (2001) Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in beech–spruce ecosystems on siliceous and calcareous soil. Microbial Ecology, 42, 126–135. Xu GH (许光辉), Zheng HY (郑洪元), Zhang DS (张德生),
第2期
周丽霞和丁明懋: 土壤微生物学特性对土壤健康的指示作用
171
Lu YB (卢耀波), Li YK (李玉坤), Zhang SX (张淑贤) , Liu ZZ (刘增柱), Wu WF (吴文芳) , Zhao ZY (赵振英) , Li FZ (李风珍) , Liu RJ (刘瑞君) (1984) Study on ecological distribution and biochemical properties of forest soil microorganisms on the northern slope of the Changbai Shan Mountain Natural Reserve. Acta Ecologica Sinica (生态学报), 4, 207–223. (in Chinese with English abstract) Yang YG (杨元根), Paterson E, Campbell C (2002) Application of BIOLOG method to study on microbial features in urban and rural soils. Acta Pedologica Sinica (土壤学报), 39, 582–589. (in Chinese with English abstract) Yao HY, He ZL, Huang CY (2001) Phospholipid fatty acid profiles of Chinese red soil with varying fertility levels and land use histories. Pedosphere, 11, 97–l03. Yi WM (蚁伟民), Ding MM (丁明懋), Liao LY (廖兰玉) (1990) Vesicular arbuscular mycorrhiza in artificial forests in Heshan and Dianbai, Guangdong. Tropical and Subtropical Forest Ecosystem (热带亚热带森林生态系统研 究), 7, 41–49. (in Chinese with English abstract) Yi WM (蚁伟民), Ding MM (丁明懋), Liao LY (廖兰玉), Chen TX (1984) The research of soil microbial characteristics in the Dinghushan Biosphere Reserve and Dianbai artificial vegetaion station. Tropical and Subtropical Forest Ecosystem ( 热 带 亚 热 带 森 林 生 态 系 统 研 究 ), 2, 59–68. (in Chinese with English abstract) Yi WM (蚁伟民), Fu SL (傅声雷), Zhou CY (周存宇), Ding
MM (丁明懋) (1995) A study on soil microbial biomass in artificial and natural forests. Acta Ecologica Sinica (生态 学报), 15 (Suppl. A), 141–147. (in Chinese with English abstract) Yu S (余慎), Li Y (李勇), Wang JH (王俊华), Che YP (车玉 萍), Pan YH (潘映华), Li ZG (李振高) (1999) Study on the soil microbial biomass as a bioindicator of soil quality in the red earth ecosystem. Acta Pedologica Sinica (土壤 学报), 36, 413–422. (in Chinese with English abstract) Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils, 29, 111–129. Zhang HY (张海燕), Xiao YH (肖延华), Zhang XD (张旭东), Li J (李军), Xi LM (席联敏) (2006) Microbial biomass as an indicator for evaluation of soil fertility properties. Chinese Journal of Soil Science (土壤通报), 37, 422–425. (in Chinese with English abstract) Zhou LK (周礼恺), Zhang ZM (张志明), Cao CJ (曹承 锦)(1983) On the role of the totality of soil enzyme activities in the evaluation of the level of soil fertility. Acta Pedologica Sinica (土壤学报), 20, 413–417. (in Chinese with English abstract)
(责任编辑: 周玉荣)
本文关键词:土壤微生物学,,由笔耕文化传播整理发布。
本文编号:174140
本文链接:https://www.wllwen.com/wenshubaike/kjzx/174140.html