当前位置:主页 > 论文百科 > 硕士论文 >

《数学史概论》(李文林)【摘要

发布时间:2016-03-04 09:29

内容简介

《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时本着“厚今薄古”的原则,充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片,可供综合大学、师范院校各专业的学生作为数学史课程的教材,同时也可供广大数学工作者和一般科学爱好者阅读参考。

目录

0 数学史——人类文明史的重要篇章
0.1 数学史的意义
0.2 什么是数学——历史的理解
0.3 关于数学史的分期

1 数学的起源与早期发展
1.1 数与形概念的产生
1.2 河谷文明与早期数学
1.2.1 埃及数学
1.2.2 美索不达米亚数学

2 古代希腊数学
2.1 论证数学的发端
2.1.1 泰勒斯与毕达哥拉斯
2.1.2 雅典时期的希腊数学
2.2 黄金时代——亚历山大学派
2.2.1 欧几里得与几何《原本》
2.2.2 阿基米德的数学成就
2.2.3 阿波罗尼奥斯与圆锥曲线论
2.3 亚历山大后期和希腊数学的衰落

3 中世纪的中国数学
3.1 《周髀算经》与《九章算术》
3.1.1 古代背景
3.1.2 《周髀算经》
3.1.3 《九章算术》
3.2 从刘徽到祖冲之
3.2.1 刘徽的数学成就
3.2.2 祖冲之与祖
3.2.3 《算经十书》
3.3 宋元数学
3.3.1 从“贾宪三角”到“正负开方”术
3.3.2 中国剩余定理
3.3.3 内插法与垛积术
3.3.4 “天元术”与“四元术”

4 印度与阿拉伯的数学
4.1 印度数学
4.1.1 古代《绳法经》
4.1.2 “巴克沙利手稿”与零号
4.1.3 “悉檀多”时期的印度数学
4.2 阿拉伯数学
4.2.1 阿拉伯的代数
4.2.2 阿拉伯的三角学与几何学

5 近代数学的兴起
5.1 中世纪的欧洲
5.2 向近代数学的过渡
5.2.1 代数学
5.2.2 三角学
5.2.3 从透视学到射影几何
5.2.4 计算技术与对数
5.3 解析几何的诞生

6 微积分的创立
6.1 半个世纪的酝酿
6.2 牛顿的“流数术”
6.2.1 流数术的初建
6.2.2 流数术的发展
6.2.3 《原理》与微积分
6.3 莱布尼茨的微积分
6.3.1 特征三角形
6.3.2 分析微积分的建立
6.3.3 莱布尼茨微积分的发表
6.3.4 其他数学贡献
6.4 牛顿与莱布尼茨

7 分析时代
7.1 微积分的发展
7.2 微积分的应用与新分支的形成
7.3 18世纪的几何与代数

8 代数学的新生
8.1 代数方程的可解性与群的发现
8.2 从四元数到超复数
8.3 布尔代数
8.4 代数数论

9 几何学的变革
9.1 欧几里得平行公设
9.2 非欧几何的诞生
9.3 非欧几何的发展与确认
9.4 射影几何的繁荣
9.5 几何学的统一

10 分析的严格化
10.1 柯西与分析基础
10.2 分析的算术化
10.2.1 魏尔斯特拉斯
10.2.2 实数理论
10.2.3 集合论的诞生
10.3 分析的扩展
10.3.1 复分析的建立
10.3.2 解析数论的形成
10.3.3 数学物理与微分方程

11 20世纪数学概观(I)纯粹数学的主要趋势
11.1 新世纪的序幕
11.2 更高的抽象
11.2.1 勒贝格积分与实变函数论
11.2.2 泛函分析
11.2.3 抽象代数
11.2.4 拓扑学
11.2.5 公理化概率论
11.3 数学的统一化
11.4 对基础的深入探讨
11.4.1 集合论悖论
11.4.2 三大学派
11.4.3 数理逻辑的发展

12 20世纪数学概观(II)空前发展的应用数学
12.1 应用数学的新时代
12.2 数学向其他科学的渗透
12.2.1 数学物理
12.2.2 生物数学
12.2.3 数理经济学
12.3 独立的应用学科
12.3.1 数理统计
12.3.2 运筹学
12.3.3 控制论
12.4 计算机与现代数学
12.4.1 电子计算机的诞生
12.4.2 计算机影响下的数学

13 20世纪数学概观(III)现代数学成果十例
13.1 哥德尔不完全性定理(1931)
13.2 高斯-博内公式的推广(1941-1944)
13.3 米尔诺怪球(1956)
13.4 阿蒂亚-辛格指标定理(1963)
13.5 孤立子与非线性偏微分方程(1965)
13.6 四色问题(1976)
13.7 分形与混沌(1977)
13.8 有限单群分类(1980)
13.9 费马大定理的证明(1994)
13.10 若干著名未决猜想的进展

14 数学与社会
14.1 数学与社会进步
14.2 数学发展中心的迁移
14.3 数学的社会化
14.3.1 数学教育的社会化
14.3.2 数学专门期刊的创办
14.3.3 数学社团的成立
14.3.4 数学奖励

15 中国现代数学的开拓
15.1 西方数学在中国的早期传播
15.2 高等数学教育的兴办
15.3 现代数学研究的兴起
参考文献
人名索引
术语索引

摘要与插图

  抽象并非数学独有的特性,但数学的抽象却是最为典型的.数学的抽象在数与形等原始概念的形成中已经体现出来(参见第1章),并且经过一系列阶段而达到了远远超过其他知识领域的程度.数学的抽象舍弃了事物的其他一切方面而仅保留某种关系或结构;同时,不仅数学的概念是抽象的,而且数学的方法也是抽象的.从古希腊时代起,数学就使用一种特有的逻辑推理规则,来达到确定无疑的结论.这种推理方式具有这样的严密性,对于每个懂得它的人来说都是无可争辩的,因而其结论也是无可争辩的.这种推理模式赋予数学以其他科学不能比拟的精确性,成为人类思维方法的一种典范,并日益渗透到其他知识领域,此乃数学影响于人类文化的突出方面之一。
  与抽象性相联系的数学的另一个特点是在对宇宙世界和人类社会的探索中追求最大限度的一般性模式特别是一般性算法的倾向.这种倾向在数学的早期发展中亦已表现出来.埃及纸草书和巴比伦泥版文书中的数学文献,虽然都是具体问题的汇集,但其中采用的算法大都具有一般性.二分之一高乘底的面积公式,,如果只对某个特殊的三角形适用,那在数学上是几乎没有意义的,它应适用于一切三角



本文编号:31275

资料下载
论文发表

本文链接:https://www.wllwen.com/wenshubaike/kjzx/31275.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ba05d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com