当前位置:主页 > 文艺论文 > 动漫艺术论文 >

基于概念图的动画剧本生成的研究

发布时间:2018-05-15 17:30

  本文选题:概念图 + 概念关系抽取 ; 参考:《西北大学》2013年硕士论文


【摘要】:动漫产业的迅速发展带动了经济增长并丰富了人们的生活,而传统的动画生成需要大量人工繁琐的劳动,动画的自动生成可有效的将人力解放出来,节省大量资源。动画剧本的生成是动画自动生成中的关键环节,是连接故事文本与动画场面的桥梁,如何抽取动画剧本所需的剧本元素,并选取合适的方式将剧本组织起来是解决问题的关键。 对于动画剧本生成的研究,国外已有相当数量的研究成果,而由于中文构词的特殊性,国内的研究还有所欠缺。本文运用了自然语言理解技术,将剧本生成系统分成了三个部分:故事理解、概念关系抽取、剧本其它元素的抽取。具体内容如下: 在故事理解中,本文选择了概念图这一知识表达工具对故事文本做出形式化描述。因为知识表达是本系统的基础,而概念图这种与自然语言互译的知识表示工具能够很好的进行语义分析和推理。本文改进了概念图的生成算法,提出了一种主线图的方法。主线图是在概念图生成的基础上,通过概念图的运算,得到包含主要角色和主要情节的图。通过主线图这一工具,获得对故事的总体理解和把握。 概念关系的抽取主要是抽取童话故事中角色与场景、角色与角色以及角色与道具之间的关系。本文改进了传统的模板匹配方法,结合概念图的强大语义表达功能,通过总结常见关系和规则映射得到概念图模板库,进而利用概念图匹配运算来抽取相应关系。实验表明,采用基于概念图的方法,概念关系抽取的准确率和召回率得到有效的提高。 剧本元素除了概念关系之外,还有角色名、道具名以及场景信息等。在此首先解决了未登录词的识别问题,提出了基于知网的混合识别方法进行识别角色与道具。由于在识别中增加了语义因素,这种方法识别的效果要优于传统的基于规则和统计的方法。针对场景信息中的时间地点等信息,通过建立规则库,采用基于规则的方式进行有效抽取。最后选取动画剧本标记语言CSML(cartoon scenario markup language)对抽取的信息进行描述,形成动画剧本。
[Abstract]:The rapid development of animation industry has led to economic growth and enriched people's lives, but the traditional animation production needs a lot of labor, animation automatic generation can effectively liberate human resources and save a lot of resources. Animation script generation is a key link in automatic animation generation, it is a bridge between the story text and the animation scene. How to extract the script elements needed for the animation script and choose the appropriate way to organize the script is the key to solve the problem. For the animation script generation research, there have been a considerable number of foreign research results, but due to the particularity of Chinese word-formation, there is still a lack of domestic research. This paper uses natural language understanding technology to divide the script generation system into three parts: story understanding, concept relation extraction, script other elements extraction. The details are as follows: In the process of story understanding, this paper chooses concept graph as a knowledge representation tool to formalize the story text. Because knowledge representation is the foundation of this system, concept map, which is a knowledge representation tool with natural language translation, can do semantic analysis and reasoning well. In this paper, the algorithm of generating concept graph is improved, and a method of principal graph is proposed. The main line graph is based on the generation of the concept graph, and through the operation of the concept graph, the graph containing the main characters and the main plot is obtained. Through the main line map this tool, obtains the overall understanding and the grasp to the story. The extraction of conceptual relations is mainly to extract the relationship between characters and scenes, roles and characters, and between characters and props in fairy tales. This paper improves the traditional template matching method, combines the powerful semantic expression function of the concept map, and obtains the concept map template library by summarizing the common relation and the rule mapping, and then extracts the corresponding relation by using the concept map matching operation. Experiments show that the accuracy and recall rate of concept relation extraction are improved effectively by using concept graph based method. In addition to conceptual relationships, script elements include role names, props names and scene information. In this paper, the problem of recognition of unrecorded words is first solved, and a hybrid recognition method based on knowledge net is proposed to identify characters and props. Due to the addition of semantic factors in recognition, this method is superior to the traditional rule-based and statistical methods. Aiming at the information of time and place in scene information, the rule base is established and the rule based approach is used to extract the information effectively. Finally, the animation script markup language CSML(cartoon scenario markup language) is selected to describe the extracted information to form the animation script.
【学位授予单位】:西北大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP391.1

【参考文献】

相关期刊论文 前10条

1 蔡勇智;;未登录词识别算法的改进[J];福建电脑;2006年03期

2 陈红琳;;自然语言的形式化[J];阜阳师范学院学报(社会科学版);2009年02期

3 尹兰;王家玮;;自然语言语义形式化二维视角[J];福建电脑;2012年05期

4 刘晓霞;新的知识表示方法-概念图[J];航空计算技术;1997年04期

5 陈耀东;王挺;陈火旺;;浅层语义分析研究[J];计算机研究与发展;2008年S1期

6 刘岩;张蕾;;基于概念图的中文信息自动转化技术研究[J];计算机工程与应用;2008年15期

7 白振兴;;一种新的知识表达方法:概念结构[J];计算机科学;1992年06期

8 江澜;岳小莉;冯柏岚;李良军;曹存根;;基于实例和约束的三维场景概念设计和系统实现[J];计算机科学;2008年01期

9 周蕾;朱巧明;;基于统计和规则的未登录词识别方法研究[J];计算机工程;2007年08期

10 王珏,袁小红,,石纯一,郝继刚;关于知识表示的讨论[J];计算机学报;1995年03期

相关博士学位论文 前1条

1 张蕾;概念结构及其应用[D];西北工业大学;2001年

相关硕士学位论文 前4条

1 刘龙;音乐领域全局实体关系抽取研究[D];哈尔滨工业大学;2010年

2 冯礼;基于事件框架的突发事件信息抽取[D];上海交通大学;2008年

3 李红良;火箭发射环境信息的推理技术应用研究[D];重庆大学;2009年

4 周文;基于XML的动画剧本描述及其应用研究[D];国防科学技术大学;2010年



本文编号:1893252

资料下载
论文发表

本文链接:https://www.wllwen.com/wenyilunwen/dongmansheji/1893252.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e58c4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com